在低标签制度中,解决图像的多标签识别(MLR)是许多现实世界应用的一项艰巨任务。最近的工作学会了文本和视觉空间之间的一致性,以补偿图像标签不足,但由于可用的MLR注释量有限,因此失去了准确性。在这项工作中,我们利用数百万辅助图像文本对预测的文本和视觉特征的牢固对齐,并提出双背景优化(dualCoop)作为部分标签MLR和零发射MLR的统一框架。 DualCoop用类名来编码正面和负面的上下文,作为语言输入的一部分(即提示)。由于DualCoop仅在验证的视觉语言框架上引入了非常轻松的开销,因此它可以迅速适应具有有限的注释甚至看不见的类别的多标签识别任务。对两个挑战性低标签设置的标准多标签识别基准测试的实验证明了我们方法比最新方法的优势。
translated by 谷歌翻译
Prompt tuning has been employed as an efficient way to adapt large vision-language pre-trained models (e.g. CLIP) to various downstream tasks in data-limited or label-limited settings. Nonetheless, visual data (e.g., images) is by default prerequisite for learning prompts in existing methods. In this work, we advocate that the effectiveness of image-text contrastive learning in aligning the two modalities (for training CLIP) further makes it feasible to treat texts as images for prompt tuning and introduce TaI prompting. In contrast to the visual data, text descriptions are easy to collect, and their class labels can be directly derived. Particularly, we apply TaI prompting to multi-label image recognition, where sentences in the wild serve as alternatives to images for prompt tuning. Moreover, with TaI, double-grained prompt tuning (TaI-DPT) is further presented to extract both coarse-grained and fine-grained embeddings for enhancing the multi-label recognition performance. Experimental results show that our proposed TaI-DPT outperforms zero-shot CLIP by a large margin on multiple benchmarks, e.g., MS-COCO, VOC2007, and NUS-WIDE, while it can be combined with existing methods of prompting from images to improve recognition performance further. Code is released at https://github.com/guozix/TaI-DPT.
translated by 谷歌翻译
Prompt Tuning, conditioning on task-specific learned prompt vectors, has emerged as a data-efficient and parameter-efficient method for adapting large pretrained vision-language models to multiple downstream tasks. However, existing approaches usually consider learning prompt vectors for each task independently from scratch, thereby failing to exploit the rich shareable knowledge across different vision-language tasks. In this paper, we propose multitask vision-language prompt tuning (MVLPT), which incorporates cross-task knowledge into prompt tuning for vision-language models. Specifically, (i) we demonstrate the effectiveness of learning a single transferable prompt from multiple source tasks to initialize the prompt for each target task; (ii) we show many target tasks can benefit each other from sharing prompt vectors and thus can be jointly learned via multitask prompt tuning. We benchmark the proposed MVLPT using three representative prompt tuning methods, namely text prompt tuning, visual prompt tuning, and the unified vision-language prompt tuning. Results in 20 vision tasks demonstrate that the proposed approach outperforms all single-task baseline prompt tuning methods, setting the new state-of-the-art on the few-shot ELEVATER benchmarks and cross-task generalization benchmarks. To understand where the cross-task knowledge is most effective, we also conduct a large-scale study on task transferability with 20 vision tasks in 400 combinations for each prompt tuning method. It shows that the most performant MVLPT for each prompt tuning method prefers different task combinations and many tasks can benefit each other, depending on their visual similarity and label similarity. Code is available at https://github.com/sIncerass/MVLPT.
translated by 谷歌翻译
最近,Vision-Language预训练的零拍图像分类已经表现出令人难以置信的成就,即该模型可以对任意类别进行分类而不看到该类别的其他注释图像。然而,目前尚不清楚如何在更广泛的视觉问题上进行零射识别,例如对象检测和语义分割。在本文中,我们通过在现成的预训练的视觉模型,即剪辑上建立零拍语义分割来定位零拍语义分割。很难因为语义分割和剪辑模型在不同的视觉粒度上执行,该语义分段处理在像素上时,而剪辑在图像上执行。为了解决处理粒度的差异,我们拒绝使用普遍的一级FCN基于FCN的框架,并倡导一个两级语义分割框架,其中第一阶段提取一个完全提取的掩模提案和第二阶段利用基于图像的剪辑模型在第一阶段生成的蒙版图像作物上执行零拍分类。我们的实验结果表明,这种简单的框架通过大型利润率超越了先前的最先进:+29.5 Hiou On Pascal VOC 2012 DataSet,+8.9 Hiou On Coco Stuff DataSet。凭借其简单性和强大的表现,我们希望本框架成为促进未来研究的基准。
translated by 谷歌翻译
对比视觉语言预培训(剪辑)最近淹没了其可转让的视觉表现学习的关注。由大规模的图像文本对进行监督,剪辑能够对准配对的图像和文本,从而在开放词汇场景中进行零拍摄识别。然而,特定应用与通常预先训练的知识之间存在语义差距,这使得匹配子最优在下游任务上。在本文中,我们提出了VT-CLIP通过可视导向文本来增强视觉语言建模。具体而言,我们指导文本功能以自适应地探索图像上的信息区域,并通过跨关注的Machanism聚合视觉特征。以这种方式,视觉引导文本与图像变得更加语义相关,这极大地利益匹配过程。在几次拍摄的设置中,我们在11名知名分类数据集中评估我们的VT-CLIP,并进行实验广泛的消融研究,以证明VT-CLIP的有效性。代码将很快发布。
translated by 谷歌翻译
在计算机视觉中,多标签分类(包括零击的多标签分类)是具有许多真实应用程序的重要任务。在本文中,我们提出了一种新颖的算法,对齐双模态分类器(ADDS),其中包括一个双模式解码器(DM-DECODER),具有视觉和文本特征之间的对齐方式,用于多标签分类任务。此外,我们设计了一种简单但有效的方法,称为金字塔 - 福音,以提高分辨率高的输入的性能。在标准的多标签基准数据集(MS-Coco和NUS范围内)进行的广泛实验表明,我们的方法显着胜过以前的方法,并为常规多标签分类,零发射的多标签提供最先进的性能分类和一种称为单一标签分类的极端情况,其中在单标签数据集(Imagenet-1K,Imagenet-21K)上训练的模型在多标签的模型(MS-Coco和NUS范围内)进行了测试。我们还分析了视觉文本一致性如何有助于提出的方法,验证DM码头的重要性,并证明了金字塔 - 反向视觉变压器的有效性。
translated by 谷歌翻译
随着大型预训练的Vison语言模型(如剪辑)的出现,可以通过及时调整来调整可转让表示形式。及时调整试图从存储在预训练的视觉模型的图像和文本编码器中的常识中探索有益信息,以探索下游任务。最近提出的名为“上下文优化”(COP)的方法将一组可学习的向量从语言侧引入文本提示符,而单独调整文本提示符则不会影响图像编码器的计算视觉特征,从而导致了次级优势。在本文中,我们通过学习文本提示并同时为文本和图像编码器提供双重模式提示调整范式。此外,为了使视觉提示更多地集中在目标视觉概念上,我们提出了类感知的视觉及时调整(CAVPT),该调整是通过在模板提示和视觉类别令牌嵌入的语言描述之间进行交叉注意来动态生成的。我们的方法提供了一种新的范式来调整大型预训练的视觉模型,并在8个数据集上进行了广泛的实验结果,证明了该方法的有效性。我们的代码在补充材料中可用。
translated by 谷歌翻译
现有的时间动作检测(TAD)方法依赖于大型培训数据,包括细分级注释,仅限于在推理期间单独识别先前看到的课程。为每类兴趣收集和注释一个大型培训集是昂贵的,因此无法计算。零射TAD(ZS-TAD)通过启用预训练的模型来识别任何看不见的动作类别来解决这一障碍。同时,ZS-TAD的调查大大降低,ZS-Tad也更具挑战性。受零摄像图像分类的成功的启发,我们旨在解决更复杂的TAD任务。一种直观的方法是将现成的建议探测器与剪辑样式分类集成。但是,由于顺序定位(例如,提案生成)和分类设计,它很容易进行定位误差传播。为了克服这个问题,在本文中,我们通过视觉提示(陈旧)提出了一种新型的零射击时间动作检测模型。这种新颖的设计通过破坏介于两者之间的错误传播途径来有效地消除了定位和分类之间的依赖性。我们进一步介绍了分类和定位之间的相互作用机制,以改善优化。对标准ZS-TAD视频基准测试的广泛实验表明,我们的陈旧的表现明显优于最先进的替代方案。此外,我们的模型还与最近的强大竞争对手相比,在受到监督的TAD上还能产生卓越的成果。 Stale的Pytorch实现可从https://github.com/sauradip/stale获得。
translated by 谷歌翻译
Recently, CLIP has been applied to pixel-level zero-shot learning tasks via a two-stage scheme. The general idea is to first generate class-agnostic region proposals and then feed the cropped proposal regions to CLIP to utilize its image-level zero-shot classification capability. While effective, such a scheme requires two image encoders, one for proposal generation and one for CLIP, leading to a complicated pipeline and high computational cost. In this work, we pursue a simpler-and-efficient one-stage solution that directly extends CLIP's zero-shot prediction capability from image to pixel level. Our investigation starts with a straightforward extension as our baseline that generates semantic masks by comparing the similarity between text and patch embeddings extracted from CLIP. However, such a paradigm could heavily overfit the seen classes and fail to generalize to unseen classes. To handle this issue, we propose three simple-but-effective designs and figure out that they can significantly retain the inherent zero-shot capacity of CLIP and improve pixel-level generalization ability. Incorporating those modifications leads to an efficient zero-shot semantic segmentation system called ZegCLIP. Through extensive experiments on three public benchmarks, ZegCLIP demonstrates superior performance, outperforming the state-of-the-art methods by a large margin under both "inductive" and "transductive" zero-shot settings. In addition, compared with the two-stage method, our one-stage ZegCLIP achieves a speedup of about 5 times faster during inference. We release the code at https://github.com/ZiqinZhou66/ZegCLIP.git.
translated by 谷歌翻译
从任务不足的预训练的深层模型中转移知识以进行下游任务是计算机视觉研究中的一个重要主题。随着计算能力的增长,我们现在拥有大规模的模型体系结构和数据量的开源视觉语言预培训模型。在这项研究中,我们专注于转移视力分类任务的知识。传统方法随机初始化线性分类器头进行视觉分类,但是它们将文本编码器的用法留为未发现的下游视觉识别任务。在本文中,我们修改了线性分类器的角色,并用对象类别的嵌入式语言表示替换分类器。这些语言表示是从视觉语言预训练模型的文本编码器初始化的,以进一步利用其良好的语言模型参数。实证研究表明,我们的方法提高了视频分类的性能和训练速度,模型的变化微不足道。特别是,我们的范式在动力学400上实现了87.3%的最新准确性。
translated by 谷歌翻译
诸如剪辑之类的大型预训练的视觉模型在学习表现方面表现出巨大的潜力,这些模型可以在各种下游任务中转移。与主要基于离散标签的传统表示学习不同,视觉语言预训练会使图像和文本在公共特征空间中对齐,这允许通过提示零弹性转移到下游任务,即从分类权重合成。描述兴趣类的自然语言。在这项工作中,我们表明,在实践中部署此类模型的一个重大挑战是及时的工程,它需要域专业知识,并且非常耗时 - 由于措辞的略有变化,需要花费大量时间来进行单词调整可能会对性能产生巨大影响。受到自然语言处理(NLP)迅速学习研究的最新进展的启发,我们提出了上下文优化(COP),这是一种专门用于调整类似剪辑的视觉语言模型的简单方法,用于下游图像识别。具体而言,Coop用可学习的向量建模了提示A的上下文单词,而整个预训练的参数则保持固定。为了处理不同的图像识别任务,我们提供了两个COOP的实现:统一上下文和特定于班级的上下文。通过在11个数据集上进行的大量实验,我们证明Coop只需要一两个镜头才能以相当的利润击败手工制作的提示,并且能够以16张镜头(例如16张照片)获得迅速工程的显着改进增益约为15%(最高达到45%以上)。尽管是一种基于学习的方法,但与使用手工制作的提示相比,Coop与零拍模型相比,取得了出色的域泛化性能。
translated by 谷歌翻译
探索大规模预处理的基础模型对计算机视觉具有重大兴趣,因为这些模型可以快速转移到许多下游任务中。本文介绍了对比字幕(COCA),这是一种极简主义的设计,旨在为图像文本编码器编码器基础模型预算与对比度损失和字幕损失,从而从剪辑和诸如simvlm之类的生成方法之类的对比方法中包含模型能力。与所有解码器层都参与编码器输出的标准编码器 - 模块变压器相反,可口可乐省略了解码器层的上半部分的交叉注意,以编码单峰文本表示,并串联到剩余的解码器层,这些解码器与图像编码器相交的解码器层多模式图像文本表示。除了对多模态解码器输出的字幕损失外,我们还应用了单峰图像和文本嵌入之间的对比损失,该输出可以预测文本令牌自动加压。通过共享相同的计算图,可以用最小的开销有效地计算两个培训目标。可口可乐是端到端和从头开始的网络尺度alt-text数据和带注释的图像,通过将所有标签视为文本,无缝地统一自然语言监督以进行表示。从经验上讲,可口可乐通过零拍传输或在广泛的下游任务上进行零摄像转移或最少的特定任务适应,跨越视觉识别(Imagenet,Kinetics-400/600/700,瞬间, ),交叉模式检索(MSCOCO,FLICKR30K,MSR-VTT),多模式理解(VQA,SNLI-VE,NLVR2)和图像字幕(MSCOCO,NOCAPS)。值得注意的是,在Imagenet分类方面,COCA获得了86.3%的TOP-1准确性,带有冷冻编码器和学习的分类头90.6%,以及带有填充编码器的Imagenet上的新最先进的91.0%Top-1 Top-1精度。
translated by 谷歌翻译
具有大尺度图像文本对的视觉预训练(VLP)在各个领域都表现出卓越的性能。但是,Internet上的图像文本对共存通常缺乏明确的对齐信息,这对于VLP来说是次优的。建议采用现成的对象检测器来利用其他图像标签信息。但是,对象检测器是耗时的,只能识别预定义的对象类别,从而限制了模型容量。受到观察的启发,即文本包含不完整的细粒图像信息,我们介绍了Ideas,该想法代表通过在线多标签识别VLP来增加文本多样性。想法表明,可以在VLP期间共同优化从文本中提取的图像标签的多标签学习。此外,想法可以在线识别有价值的图像标签,以提供更明确的文本监督。全面的实验表明,想法可以显着提高多个下游数据集上的性能,并具有较小的额外计算成本。
translated by 谷歌翻译
这项工作的目的是使用零手动注释建立可扩展的管道,以将对象检测器扩展到新颖/看不见的类别。为此,我们做出以下四个贡献:(i)追求概括,我们提出了一个两阶段的开放式摄制对象检测器,其中类无形的对象建议与预先训练的视觉视觉训练的文本编码一起分类语言模型; (ii)要将视觉潜在空间(RPN框建议)与预训练的文本编码器配对,我们提出了区域提示的概念,以学习将文本嵌入空间与区域视觉对象特征相结合; (iii)为了扩展学习过程以检测更广泛的对象,我们通过新颖的自我训练框架利用可用的在线资源,该框架允许在嘈杂的未经图像的网络图像上训练所提出的检测器。最后,(iv)评估我们所提出的检测器,称为及时插图,我们对具有挑战性的LVI和MS-COCO数据集进行了广泛的实验。提示件表现出优于现有方法的卓越性能,而其他培训图像和零手动注释较少。带代码的项目页面:https://fcjian.github.io/promptdet。
translated by 谷歌翻译
Prompt tuning is a new few-shot transfer learning technique that only tunes the learnable prompt for pre-trained vision and language models such as CLIP. However, existing prompt tuning methods tend to learn spurious or entangled representations, which leads to poor generalization to unseen concepts. Towards non-spurious and efficient prompt learning from limited examples, this paper presents a novel \underline{\textbf{C}}ounterfactual \underline{\textbf{P}}rompt \underline{\textbf{L}}earning (CPL) method for vision and language models, which simultaneously employs counterfactual generation and contrastive learning in a joint optimization framework. Particularly, CPL constructs counterfactual by identifying minimal non-spurious feature change between semantically-similar positive and negative samples that causes concept change, and learns more generalizable prompt representation from both factual and counterfactual examples via contrastive learning. Extensive experiments demonstrate that CPL can obtain superior few-shot performance on different vision and language tasks than previous prompt tuning methods on CLIP. On image classification, we achieve 3.55\% average relative improvement on unseen classes across seven datasets; on image-text retrieval and visual question answering, we gain up to 4.09\% and 25.08\% relative improvements across three few-shot scenarios on unseen test sets respectively.
translated by 谷歌翻译
使用图像文本对的对比语言图像预测(剪辑)在零拍摄和传输学习设置中的图像分类中取得了令人印象深刻的结果。但是,我们表明,直接应用此类模型以识别对象检测的图像区域导致由于域移位导致的性能差:剪辑训练以与文本描述的整体匹配,而不捕获图像之间的细粒度对齐地区和文本跨度。为了缓解此问题,我们提出了一种称为RegionClip的新方法,可显着扩展剪辑以学习区域级视觉表示,从而在图像区域和文本概念之间实现细粒度对齐。我们的方法利用剪辑模型将图像区域与模板标题匹配,然后预先列出我们的模型以对准要素空间中的这些区域文本对。将预磨料模型转移到开放词汇对象检测任务时,我们的方法显着优于3.8 AP50和2.2 AP的最新技术,分别用于COCO和LVIS数据集的新型类别。更多,学习区域表示支持对象检测的零拍摄推断,显示了对COCO和LVIS数据集的有希望的结果。我们的代码可在https://github.com/microsoft/regionclip上获得。
translated by 谷歌翻译
诸如剪辑之类的对比视觉模型在转移学习方面已显示出巨大进展。在推理阶段,需要仔细设计适当的文本描述,也称为提示,以正确地对给定的图像进行分类。为了避免繁琐的及时工程,最近的作品,例如Coop,Clip-Audapter和Tip-Adapter,建议将视觉模型改编成下游图像识别任务,以在一小部分标记的数据上。尽管实现了有希望的改进,但是需要来自目标数据集的标记数据可能会限制可扩展性。在本文中,我们探讨了一种不同的情况,在该场景中,目标数据集的标签未经证实,并提出了一种无监督的及时学习方法(UPL)方法,以避免及时工程,同时改善类似夹子的视觉模型的传递性能。据我们所知,UPL是第一项将无监督学习引入及时学习的工作。在实验上,我们的UPL在ImageNet以及其他10个数据集上及时使用及时的工程剪辑优于原始剪辑。增强版本的UPL甚至与大多数数据集的8-Shot Coop和8-Shot Tip-Adapter都具有竞争力。代码和型号可在https://github.com/tonyhuang2022/upl上找到。
translated by 谷歌翻译
预训练的视觉模型(例如,剪辑)在许多下游任务中显示出有希望的零弹性概括,并具有正确设计的文本提示。最近的作品不依赖手工设计的提示,而是使用下游任务的培训数据来学习提示。虽然有效,但针对领域数据的培训却降低了模型的概括能力,使其无法看到新领域。在这项工作中,我们提出了测试时间提示调整(TPT),该方法可以通过单个测试样本即时学习自适应提示。对于图像分类,TPT通过使用置信度选择最小化熵来优化提示,以便模型在每个测试样本的不同增强视图上都具有一致的预测。在评估对自然分布变化的概括时,TPT平均将零击的TOP-1精度提高了3.6%,超过了先前需要其他特定于任务的训练数据的迅速调整方法。在评估看不见类别的跨数据集泛化时,TPT与使用其他培训数据的最先进方法相当。项目页面:https://azshue.github.io/tpt。
translated by 谷歌翻译
很少有射击分类需要深层神经网络才能仅从有限的培训图像中学习广义表示,这在低数据制度中很有挑战,但很重要。最近,基于剪辑的方法显示出有希望的很少的射击性能受益于对比的语言图像预训练。基于这一点,我们质疑大规模的预训练是否可以减轻少数数据的缺陷,并通过预测的知识帮助代表性学习。在本文中,我们提出了Como,这是对预培训模型的合作,该模型结合了来自各种培训范式的各种先验知识,以获得更好的几次学习。我们的科莫包括:剪辑的语言对比知识,迪诺的视力对抗性知识以及达尔 - E的语言基础知识。具体而言,科莫在两个方面工作:很少的数据扩展和多样化的知识合奏。首先,我们通过零摄影dall-e生成合成图像,以丰富少量训练数据,而无需任何人力。另一方面,我们引入了一个可学习的多知识适配器(MK-apapter),以适应剪辑和恐龙的预测。通过这种合作,COMO可以完全释放不同的预训练方法的潜力,并将其统一以进行几次分类。我们在11个数据集上进行了广泛的实验,以证明我们方法的优势和概括能力。
translated by 谷歌翻译
我们提出了Clip-Lite,一种通过与文本注释的特征对齐方式进行视觉表示学习的信息有效方法。与先前提出的剪辑模型相比,剪辑液在优化其对比学学习目标期间只需要一个负图像文本样本对。我们通过利用信息有效的较低限制来实现这一点,以最大化两个输入模态之间的相互信息。这允许剪辑Lite培训,在获得比夹子的更好的性能的同时具有显着减少的数据和批量尺寸。我们通过在Coco-Tablions数据集上预先绘制来评估剪贴画并对其他数据集进行测试传输。 Clip-Lite在Pascal VOC分类上获得+ 15.4%的映射绝对增益,并在ImageNet上获得A + 22.1%的前1个精度增益,同时与其他更复杂,文本监督模型相当或优越。 Clip-Lite还优于剪辑图像和文本检索,零拍分类和视觉接地。最后,通过在表示学习期间执行显式图像文本对齐,我们显示Clip-Lite可以利用语言语义来鼓励可以在下游任务中使用的无偏见的视觉表示。
translated by 谷歌翻译