我们研究了顺序预测和在线minimax遗憾的问题,并在一般损失函数下具有随机生成的特征。我们介绍了一个预期的最坏情况下的概念minimax遗憾,它概括并涵盖了先前已知的minimax遗憾。对于这种极匹马的遗憾,我们通过随机全局顺序覆盖的新颖概念建立了紧密的上限。我们表明,对于VC-Dimension $ \ Mathsf {Vc} $和$ I.I.D. $生成的长度$ t $的假设类别,随机全局顺序覆盖的基数可以在上限上限制高概率(WHP) e^{o(\ mathsf {vc} \ cdot \ log^2 t)} $。然后,我们通过引入一种称为Star-Littlestone维度的新复杂度度量来改善这种束缚,并显示与Star-Littlestone dimension $ \ Mathsf {Slsf {sl} $类别的类别允许订单的随机全局顺序覆盖$ e^{o(\ Mathsf) {sl} \ cdot \ log t)} $。我们进一步建立了具有有限脂肪的数字的真实有价值类的上限。最后,通过应用固定设计的Minimax遗憾的信息理论工具,我们为预期的最坏情况下的Minimax遗憾提供了下限。我们通过在预期的最坏情况下对对数损失和一般可混合损失的遗憾建立紧密的界限来证明我们的方法的有效性。
translated by 谷歌翻译
我们研究了非参数在线回归中的快速收敛速度,即遗憾的是关于具有有界复杂度的任意函数类来定义后悔。我们的贡献是两倍: - 在绝对损失中的非参数网上回归的可实现设置中,我们提出了一种随机适当的学习算法,该算法在假设类的顺序脂肪破碎尺寸方面获得了近乎最佳的错误。在与一类Littlestone维度$ D $的在线分类中,我们的绑定减少到$ d \ cdot {\ rm poly} \ log t $。这结果回答了一个问题,以及适当的学习者是否可以实现近乎最佳错误的界限;以前,即使在线分类,绑定的最知名错误也是$ \ tilde o(\ sqrt {dt})$。此外,对于真实值(回归)设置,在这项工作之前,界定的最佳错误甚至没有以不正当的学习者所知。 - 使用上述结果,我们展示了Littlestone维度$ D $的一般总和二进制游戏的独立学习算法,每个玩家达到后悔$ \ tilde o(d ^ {3/4} \ cdot t ^ {1 / 4})$。该结果概括了Syrgkanis等人的类似结果。 (2015)谁表明,在有限的游戏中,最佳遗憾可以从普通的o(\ sqrt {t})$中的$ o(\ sqrt {t})为游戏设置中的$ o(t ^ {1/4})$。要建立上述结果,我们介绍了几种新技术,包括:分层聚合规则,以实现对实际类别的最佳错误,Hanneke等人的适当在线可实现学习者的多尺度扩展。 (2021),一种方法来表明这种非参数学习算法的输出是稳定的,并且证明Minimax定理在所有在线学习游戏中保持。
translated by 谷歌翻译
学习曲线将学习算法的预期误差绘制为标记输入样本数量的函数。它们被机器学习实践者广泛使用,以衡量算法的性能,但是经典的PAC学习理论无法解释其行为。在本文中,我们介绍了一种称为VCL维度的新组合表征,该表征改进并完善了Bousquet等人的最新结果。 (2021)。我们的表征通过提供细粒度的边界来展示学习曲线的结构,并表明对于有限VCL的类,可以将衰减的速率分解为仅取决于假设类别和指数成分的线性组件,该成分是指数的成分。还取决于目标分布。特别是,VCL维度的细微差别意味着比Bousquet等人的边界更强大的下限。 (2021年),比经典的“无免费午餐”下界强。 VCL表征解决了Antos and Lugosi(1998)研究的一个开放问题,他们询问在哪些情况下存在这种下限。作为推论,我们在$ \ mathbb {r}^d $中恢复了其下限,并以原则性的方式也适用于其他情况。最后,为了对我们的工作以及与传统PAC学习界的比较提供另一个观点,我们还以一种更接近PAC环境的语言展示了结果的替代表述。
translated by 谷歌翻译
给定真实的假设类$ \ mathcal {h} $,我们在什么条件下调查有一个差异的私有算法,它从$ \ mathcal {h} $给出的最佳假设.I.i.d.数据。灵感来自最近的成果的二进制分类的相关环境(Alon等,2019; Bun等,2020),其中显示了二进制类的在线学习是必要的,并且足以追随其私人学习,Jung等人。 (2020)显示,在回归的设置中,$ \ mathcal {h} $的在线学习是私人可读性所必需的。这里的在线学习$ \ mathcal {h} $的特点是其$ \ eta $-sequentient胖胖子的优势,$ {\ rm sfat} _ \ eta(\ mathcal {h})$,适用于所有$ \ eta> 0 $。就足够的私人学习条件而言,Jung等人。 (2020)显示$ \ mathcal {h} $私下学习,如果$ \ lim _ {\ eta \ downarrow 0} {\ rm sfat} _ \ eta(\ mathcal {h})$是有限的,这是一个相当限制的健康)状况。我们展示了在轻松的条件下,\ LIM \ INF _ {\ eta \ downarrow 0} \ eta \ cdot {\ rm sfat} _ \ eta(\ mathcal {h})= 0 $,$ \ mathcal {h} $私人学习,为\ \ rm sfat} _ \ eta(\ mathcal {h})$ \ eta \ dockarrow 0 $ divering建立第一个非参数私人学习保证。我们的技术涉及一种新颖的过滤过程,以输出非参数函数类的稳定假设。
translated by 谷歌翻译
在线学习和决策中的一个核心问题 - 从土匪到强化学习 - 是要了解哪种建模假设会导致样本有效的学习保证。我们考虑了一个普遍的对抗性决策框架,该框架涵盖了(结构化的)匪徒问题,这些问题与对抗性动力学有关。我们的主要结果是通过新的上限和下限显示决策估计系数,这是Foster等人引入的复杂度度量。在与我们环境的随机对应物中,对于对抗性决策而言是必要和足够的遗憾。但是,与随机设置相比,必须将决策估计系数应用于所考虑的模型类(或假设)的凸壳。这就确定了容纳对抗奖励或动态的价格受凸层化模型类的行为的约束,并恢复了许多现有结果 - 既积极又负面。在获得这些保证的途径中,我们提供了新的结构结果,将决策估计系数与其他众所周知的复杂性度量的变体联系起来,包括Russo和Van Roy的信息比以及Lattimore和Gy的探索目标\“ {o} rgy。
translated by 谷歌翻译
在这项工作中,我们调查了Steinke和Zakynthinou(2020)的“条件互信息”(CMI)框架的表现力,以及使用它来提供统一框架,用于在可实现的环境中证明泛化界限。我们首先证明可以使用该框架来表达任何用于从一类界限VC维度输出假设的任何学习算法的非琐碎(但是次优)界限。我们证明了CMI框架在用于学习半个空间的预期风险上产生最佳限制。该结果是我们的一般结果的应用,显示稳定的压缩方案Bousquet al。 (2020)尺寸$ k $有统一有限的命令$ o(k)$。我们进一步表明,适当学习VC类的固有限制与恒定的CMI存在适当的学习者的存在,并且它意味着对Steinke和Zakynthinou(2020)的开放问题的负面分辨率。我们进一步研究了价值最低限度(ERMS)的CMI的级别$ H $,并表明,如果才能使用有界CMI输出所有一致的分类器(版本空间),只有在$ H $具有有界的星号(Hanneke和杨(2015)))。此外,我们证明了一般性的减少,表明“休假”分析通过CMI框架表示。作为推论,我们研究了Haussler等人提出的一包图算法的CMI。 (1994)。更一般地说,我们表明CMI框架是通用的,因为对于每一项一致的算法和数据分布,当且仅当其评估的CMI具有样品的载位增长时,预期的风险就会消失。
translated by 谷歌翻译
我们考虑随机环境中在线线性回归的问题。我们派生了在线岭回归和前向算法的高概率遗憾。这使我们能够更准确地比较在线回归算法并消除有界观测和预测的假设。我们的研究由于其增强的界限和鲁棒性对正则化参数而代替脊,所以提出了前向算法的倡导者。此外,我们解释了如何将其集成在涉及线性函数近似的算法中以消除界限假设,而不会恶化理论界限。我们在线性强盗设置展示了这种修改,其中它产生了改进的遗憾范围。最后,我们提供数字实验来说明我们的结果并赞同我们的直觉。
translated by 谷歌翻译
一系列不受限制的在线凸优化中的作品已经调查了同时调整比较器的规范$ u $和梯度的最大规范$ g $的可能性。在完全的一般性中,已知匹配的上限和下界表明,这是不可避免的$ g u^3 $的不可避免的成本,当$ g $或$ u $提前知道时,这是不需要的。令人惊讶的是,Kempka等人的最新结果。 (2019年)表明,在特定情况下,不需要这样的适应性价格,例如$ -Lipschitz损失(例如铰链损失)。我们通过表明我们专门研究任何其他常见的在线学习损失,我们的结果涵盖了日志损失,(线性和非参数)逻辑回归,我们实际上从来没有任何代价来为适应性支付的代价,从而跟进这一观察结果,我们会跟进这一观察结果。方形损耗预测,以及(线性和非参数)最小二乘回归。我们还通过提供对$ U $的明确依赖的下限来填补文献中的几个空白。在所有情况下,我们都会获得无标度算法,这些算法在数据恢复下是合理的不变。我们的一般目标是在不关心计算效率的情况下建立可实现的速率,但是对于线性逻辑回归,我们还提供了一种适应性方法,该方法与Agarwal等人的最新非自适应算法一样有效。 (2021)。
translated by 谷歌翻译
我们考虑在对抗环境中的强大学习模型。学习者获得未腐败的培训数据,并访问可能受到测试期间对手影响的可能腐败。学习者的目标是建立一个强大的分类器,该分类器将在未来的对抗示例中进行测试。每个输入的对手仅限于$ k $可能的损坏。我们将学习者 - 对手互动建模为零和游戏。该模型与Schmidt等人的对抗示例模型密切相关。 (2018); Madry等。 (2017)。我们的主要结果包括对二进制和多类分类的概括界限,以及实现的情况(回归)。对于二元分类设置,我们都拧紧Feige等人的概括。 (2015年),也能够处理无限假设类别。样本复杂度从$ o(\ frac {1} {\ epsilon^4} \ log(\ frac {| h |} {\ delta})$ to $ o \ big(\ frac {1} { epsilon^2}(kvc(h)\ log^{\ frac {3} {2}+\ alpha}(kvc(h))+\ log(\ frac {1} {\ delta} {\ delta})\ big)\ big)\ big)$ for任何$ \ alpha> 0 $。此外,我们将算法和概括从二进制限制到多类和真实价值的案例。一路上,我们获得了脂肪震惊的尺寸和$ k $ fold的脂肪的尺寸和Rademacher复杂性的结果最大值的功能类别;这些可能具有独立的兴趣。对于二进制分类,Feige等人(2015年)使用遗憾的最小化算法和Erm Oracle作为黑匣子;我们适应了多类和回归设置。该算法为我们提供了给定培训样本中的球员的近乎最佳政策。
translated by 谷歌翻译
我们通过审查反馈重复进行一定的第一价格拍卖来研究在线学习,在每次拍卖结束时,出价者只观察获胜的出价,学会了适应性地出价,以最大程度地提高她的累积回报。为了实现这一目标,投标人面临着一个具有挑战性的困境:如果她赢得了竞标 - 获得正收益的唯一方法 - 然后她无法观察其他竞标者的最高竞标,我们认为我们认为这是从中汲取的。一个未知的分布。尽管这一困境让人联想到上下文强盗中的探索探索折衷权,但现有的UCB或汤普森采样算法无法直接解决。在本文中,通过利用第一价格拍卖的结构属性,我们开发了第一个实现$ o(\ sqrt {t} \ log^{2.5} t)$ hearry bund的第一个学习算法(\ sqrt {t} \ log^{2.5} t),这是最小值的最低$ $ \ log $因素,当投标人的私人价值随机生成时。我们这样做是通过在一系列问题上提供算法,称为部分有序的上下文匪徒,该算法将图形反馈跨动作,跨环境跨上下文进行结合,以及在上下文中的部分顺序。我们通过表现出一个奇怪的分离来确定该框架的优势和劣势,即在随机环境下几乎可以独立于动作/背景规模的遗憾,但是在对抗性环境下是不可能的。尽管这一通用框架有限制,但我们进一步利用了第一价格拍卖的结构,并开发了一种学习算法,该算法在存在对手生成的私有价值的情况下,在存在的情况下可以有效地运行样本(并有效地计算)。我们建立了一个$ o(\ sqrt {t} \ log^3 t)$遗憾,以此为此算法,因此提供了对第一价格拍卖的最佳学习保证的完整表征。
translated by 谷歌翻译
我们考虑激励探索:一种多臂匪徒的版本,其中武器的选择由自私者控制,而算法只能发布建议。该算法控制信息流,信息不对称可以激励代理探索。先前的工作达到了最佳的遗憾率,直到乘法因素,这些因素根据贝叶斯先验而变得很大,并在武器数量上成倍规模扩展。采样每只手臂的一个更基本的问题一旦遇到了类似的因素。我们专注于激励措施的价格:出于激励兼容的目的,绩效的损失,广泛解释为。我们证明,如果用足够多的数据点初始化,则标准的匪徒汤普森采样是激励兼容的。因此,当收集这些数据点时,由于激励措施的绩效损失仅限于初始回合。这个问题主要降低到样本复杂性的问题:需要多少个回合?我们解决了这个问题,提供了匹配的上限和下限,并在各种推论中实例化。通常,最佳样品复杂性在“信念强度”中的武器数量和指数中是多项式。
translated by 谷歌翻译
The one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth achieves an optimal in-expectation risk bound in the standard PAC classification setup. In one of the first COLT open problems, Warmuth conjectured that this prediction strategy always implies an optimal high probability bound on the risk, and hence is also an optimal PAC algorithm. We refute this conjecture in the strongest sense: for any practically interesting Vapnik-Chervonenkis class, we provide an in-expectation optimal one-inclusion graph algorithm whose high probability risk bound cannot go beyond that implied by Markov's inequality. Our construction of these poorly performing one-inclusion graph algorithms uses Varshamov-Tenengolts error correcting codes. Our negative result has several implications. First, it shows that the same poor high-probability performance is inherited by several recent prediction strategies based on generalizations of the one-inclusion graph algorithm. Second, our analysis shows yet another statistical problem that enjoys an estimator that is provably optimal in expectation via a leave-one-out argument, but fails in the high-probability regime. This discrepancy occurs despite the boundedness of the binary loss for which arguments based on concentration inequalities often provide sharp high probability risk bounds.
translated by 谷歌翻译
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.
translated by 谷歌翻译
当在未知约束集中任意变化的分布中生成数据时,我们会考虑使用专家建议的预测。这种半反向的设置包括(在极端)经典的I.I.D.设置时,当未知约束集限制为单身人士时,当约束集是所有分布的集合时,不受约束的对抗设置。对冲状态中,对冲算法(长期以来已知是最佳的最佳速率(速率))最近被证明是对I.I.D.的最佳最小值。数据。在这项工作中,我们建议放松I.I.D.通过在约束集的所有自然顺序上寻求适应性来假设。我们在各个级别的Minimax遗憾中提供匹配的上限和下限,表明确定性学习率的对冲在极端之外是次优的,并证明人们可以在各个级别的各个层面上都能适应Minimax的遗憾。我们使用以下规范化领导者(FTRL)框架实现了这种最佳适应性,并采用了一种新型的自适应正则化方案,该方案隐含地缩放为当前预测分布的熵的平方根,而不是初始预测分布的熵。最后,我们提供了新的技术工具来研究FTRL沿半逆转频谱的统计性能。
translated by 谷歌翻译
我们考虑了一个批处理活动的方案,其中学习者可以适应地向标签Oracle发出批处理。由于具有标签Oracle(通常是人类)的互动次数较少,因此在批处理中的采样标签在实践中是非常可取的。但是,批处理主动学习通常会支付降低的适应性的价格,从而导致次优结果。在本文中,我们提出了一种解决方案,该解决方案需要在查询点的信息和多样性的信息之间进行仔细的权衡。我们从理论上研究了在实际相关的方案中研究批次的活动,其中未标记的数据库事先可用({\ em池基}主动学习)。我们分析了一种新颖的阶段贪婪算法,并表明,作为标签复杂性的函数,该算法的过量风险与标准统计学习环境中已知的最小值率相匹配。我们的结果还表现出对批处理大小的温和依赖。这些是在信息性和多样性之间进行仔细的交易来严格量化基于池的情况下批处理主动学习的统计表现的第一个理论结果。
translated by 谷歌翻译
我们为在测试时间内对对抗性示例进行了学习预测的问题,为学习预测的问题提供了最小的最佳学习者。有趣的是,我们发现这需要新的算法思想和方法来实现对抗性的学习。特别是,我们从强烈的负面意义上表明,蒙塔瑟(Montasser),Hanneke和Srebro(2019)提出的强大学习者的次级临时性以及我们确定为本地学习者的更广泛的学习者。我们的结果是通过通过关键技术贡献采用全球视角来实现的:可能具有独立利益的全球单包含图,它概括了由于Haussler,Littlestone和Warminguth引起的经典单包含图(1994年)(1994年) )。最后,作为副产品,我们确定了一个定性和定量表征哪些类别的预测因子$ \ mathcal {h} $的维度。由于Montasser等人,这解决了一个空旷的问题。 (2019年),并在固定稳健学习的样品复杂性上,在已建立的上限和下限之间结束了一个(潜在的)无限差距。
translated by 谷歌翻译
在表演性预测中,预测模型的部署触发了数据分布的变化。由于这些转变通常是未知的,因此学习者需要部署模型以获取有关其引起的分布的反馈。我们研究了在性能下发现近乎最佳模型的问题,同时保持低廉的遗憾。从表面上看,这个问题似乎等同于强盗问题。但是,它表现出一种从根本上说的反馈结构,我们将其称为表演反馈:在每次部署后,学习者都会从转移的分布中收到样本,而不仅仅是关于奖励的强盗反馈。我们的主要贡献是一种算法,该算法仅随着分配的复杂性而不是奖励功能的复杂性而实现后悔的界限。该算法仅依赖于移位的平滑度,并且不假定凸度。此外,它的最终迭代保证是近乎最佳的。关键算法的想法是对分布变化的仔细探索,该分布变化为新颖的置信范围构造了未开发模型的风险。从更广泛的角度来看,我们的工作为从土匪文献中利用工具的概念方法建立了一种概念性方法,目的是通过表演性反馈最小化后悔的目的。
translated by 谷歌翻译
我们研究神经网络表达能力的基本限制。给定两组$ f $,$ g $的实值函数,我们首先证明了$ f $中的功能的一般下限,可以在$ l^p(\ mu)$ norm中通过$ g中的功能近似$,对于任何$ p \ geq 1 $和任何概率度量$ \ mu $。下限取决于$ f $的包装数,$ f $的范围以及$ g $的脂肪震动尺寸。然后,我们实例化了$ g $对应于分段的馈电神经网络的情况,并详细描述了两组$ f $:h {\“ o} lder balls和多变量单调函数。除了匹配(已知或新的)上限与日志因素外,我们的下限还阐明了$ l^p $ Norm或SUP Norm中近似之间的相似性或差异,解决了Devore等人的开放问题(2021年))。我们的证明策略与SUP Norm案例不同,并使用了Mendelson(2002)的关键概率结果。
translated by 谷歌翻译
我们通过反馈图来重新审视随机在线学习的问题,目的是设计最佳的算法,直至常数,无论是渐近还是有限的时间。我们表明,令人惊讶的是,在这种情况下,最佳有限时间遗憾的概念并不是一个唯一的定义属性,总的来说,它与渐近率是与渐近率分离的。我们讨论了替代选择,并提出了有限时间最优性的概念,我们认为是\ emph {有意义的}。对于这个概念,我们给出了一种算法,在有限的时间和渐近上都承认了准最佳的遗憾。
translated by 谷歌翻译
我们考虑在可实现的环境中进行交互式学习,并开发一般框架,以处理从最佳ARM识别到主动分类的问题。我们开始调查,即观察到可怕算法\ emph {无法实现可实现的设置中最佳最佳状态。因此,我们设计了新的计算有效的算法,可实现最可实现的设置,该算法与对数因子的最小限制相匹配,并且是通用的,适用于包括内核方法的各种功能类,H {\“O}偏置函数,以及凸起功能。我们的算法的样本复杂性可以在众所周知的数量中量化,如延长的教学尺寸和干草堆维度。然而,与直接基于这些组合量的算法不同,我们的算法是计算效率的。实现计算效率,我们的算法使用Monte Carlo“命令运行”算法来从版本空间中的样本,而不是明确地维护版本空间。我们的方法有两个关键优势。首先,简单,由两个统一,贪婪的算法组成。第二,我们的算法具有能够无缝地利用经常可用和在实践中有用的知识。此外为了我们的新理论结果,我们经验证明我们的算法与高斯过程UCB方法具有竞争力。
translated by 谷歌翻译