The Conditional Neural Process (CNP) family of models offer a promising direction to tackle few-shot problems by achieving better scalability and competitive predictive performance. However, the current CNP models only capture the overall uncertainty for the prediction made on a target data point. They lack a systematic fine-grained quantification on the distinct sources of uncertainty that are essential for model training and decision-making under the few-shot setting. We propose Evidential Conditional Neural Processes (ECNP), which replace the standard Gaussian distribution used by CNP with a much richer hierarchical Bayesian structure through evidential learning to achieve epistemic-aleatoric uncertainty decomposition. The evidential hierarchical structure also leads to a theoretically justified robustness over noisy training tasks. Theoretical analysis on the proposed ECNP establishes the relationship with CNP while offering deeper insights on the roles of the evidential parameters. Extensive experiments conducted on both synthetic and real-world data demonstrate the effectiveness of our proposed model in various few-shot settings.
translated by 谷歌翻译
部署在医学成像任务上的机器学习模型必须配备分布外检测功能,以避免错误的预测。不确定依赖于深神经网络的分布外检测模型是否适合检测医学成像中的域移位。高斯流程可以通过其数学结构可靠地与分布数据点可靠地分开分发数据点。因此,我们为分层卷积高斯工艺提出了一个参数有效的贝叶斯层,该过程融合了在Wasserstein-2空间中运行的高斯过程,以可靠地传播不确定性。这直接用远距离的仿射操作员在分布中直接取代了高斯流程。我们对脑组织分割的实验表明,所得的架构接近了确定性分割算法(U-NET)的性能,而先前的层次高斯过程尚未实现。此外,通过将相同的分割模型应用于分布外数据(即具有病理学(例如脑肿瘤)的图像),我们表明我们的不确定性估计导致分布外检测,以优于以前的贝叶斯网络和以前的贝叶斯网络的功能基于重建的方法学习规范分布。为了促进未来的工作,我们的代码公开可用。
translated by 谷歌翻译
神经过程(NP)是一种流行的元学习方法。与高斯工艺(GPS)类似,NPS将分布定义在功能上,并可以估计其预测中的不确定性。但是,与GPS不同,NP及其变体遭受不足的折磨,并且通常具有棘手的可能性,这限制了其在顺序决策中的应用。我们提出了变形金刚神经过程(TNP),这是NP家族的新成员,将不确定性感知的元学习作为序列建模问题。我们通过基于自回旋的可能性目标学习TNP,并通过新颖的基于变压器的建筑实例化。该模型架构尊重问题结构固有的归纳偏差,例如对观察到的数据点的不变性以及与未观察到的点的等效性。我们进一步研究了TNP框架内的旋钮,以额外的计算来折衷解码分布的表达。从经验上讲,我们表明TNP在各种基准问题上实现最新性能,在元回归,图像完成,上下文多武器匪徒和贝叶斯优化方面表现优于所有先前的NP变体。
translated by 谷歌翻译
我们研究了回归中神经网络(NNS)的模型不确定性的方法。为了隔离模型不确定性的效果,我们专注于稀缺训练数据的无噪声环境。我们介绍了关于任何方法都应满足的模型不确定性的五个重要的逃亡者。但是,我们发现,建立的基准通常无法可靠地捕获其中一些逃避者,即使是贝叶斯理论要求的基准。为了解决这个问题,我们介绍了一种新方法来捕获NNS的模型不确定性,我们称之为基于神经优化的模型不确定性(NOMU)。 NOMU的主要思想是设计一个由两个连接的子NN组成的网络体系结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损耗函数进行训练。重要的是,我们的设计执行NOMU满足我们的五个Desiderata。由于其模块化体系结构,NOMU可以为任何给定(先前训练)NN提供模型不确定性,如果访问其培训数据。我们在各种回归任务和无嘈杂的贝叶斯优化(BO)中评估NOMU,并具有昂贵的评估。在回归中,NOMU至少和最先进的方法。在BO中,Nomu甚至胜过所有考虑的基准。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
There are two major types of uncertainty one can model. Aleatoric uncertainty captures noise inherent in the observations. On the other hand, epistemic uncertainty accounts for uncertainty in the model -uncertainty which can be explained away given enough data. Traditionally it has been difficult to model epistemic uncertainty in computer vision, but with new Bayesian deep learning tools this is now possible. We study the benefits of modeling epistemic vs. aleatoric uncertainty in Bayesian deep learning models for vision tasks. For this we present a Bayesian deep learning framework combining input-dependent aleatoric uncertainty together with epistemic uncertainty. We study models under the framework with per-pixel semantic segmentation and depth regression tasks. Further, our explicit uncertainty formulation leads to new loss functions for these tasks, which can be interpreted as learned attenuation. This makes the loss more robust to noisy data, also giving new state-of-the-art results on segmentation and depth regression benchmarks.
translated by 谷歌翻译
神经线性模型(NLM)是深度贝叶斯模型,通过从数据中学习特征,然后对这些特征进行贝叶斯线性回归来产生预测的不确定性。尽管他们受欢迎,但很少有作品专注于有条理地评估这些模型的预测性不确定性。在这项工作中,我们证明了NLMS的传统培训程序急剧低估了分发输入的不确定性,因此它们不能在风险敏感的应用中暂时部署。我们确定了这种行为的基本原因,并提出了一种新的培训框架,捕获下游任务的有用预测不确定性。
translated by 谷歌翻译
众所周知,即使通过核心点之间捕获数据点之间的相似性,也可以通过捕获相似性来提供准确的预测和不确定性估计,以提供准确的预测和不确定性估计。然而,传统的GP内核在捕获高维数据点之间的相似性时不是非常有效的。神经网络可用于学习在高维数据中编码复杂结构的良好表示,并且可以用作GP内核的输入。然而,神经网络的巨大数据要求使得这种方法在小数据设置中无效。为了解决代表学习和数据效率的冲突问题,我们建议通过使用概率神经网络来学习概率嵌入的深核。我们的方法将高维数据映射到低维子空间中的概率分布,然后计算这些分布之间的内核以捕获相似性。要启用端到端学习,我们可以推导出用于培训模型的功能梯度血清过程。各种数据集的实验表明,我们的方法在监督和半监督设置中占GP内核学习中的最先进。我们还将我们的方法扩展到其他小型数据范例,例如少量分类,在迷你想象网和小熊数据集上以前的方式胜过先前的方法。
translated by 谷歌翻译
最近,深度学习中的不确定性估计已成为提高安全至关重要应用的可靠性和鲁棒性的关键领域。尽管有许多提出的方法要么关注距离感知模型的不确定性,要么是分布式检测的不确定性,要么是针对分布校准的输入依赖性标签不确定性,但这两种类型的不确定性通常都是必要的。在这项工作中,我们提出了用于共同建模模型和数据不确定性的HETSNGP方法。我们表明,我们提出的模型在这两种类型的不确定性之间提供了有利的组合,因此在包括CIFAR-100C,ImagEnet-C和Imagenet-A在内的一些具有挑战性的分发数据集上优于基线方法。此外,我们提出了HETSNGP Ensemble,这是我们方法的结合版本,该版本还对网络参数的不确定性进行建模,并优于其他集合基线。
translated by 谷歌翻译
已经提出了神经常规差分方程(节点)作为流行深度学习模型的连续深度概括,例如残留网络(RESNET)。它们提供参数效率并在一定程度上在深度学习模型中自动化模型选择过程。然而,它们缺乏大量的不确定性建模和稳健性能力,这对于他们在几个现实世界应用中的使用至关重要,例如自主驾驶和医疗保健。我们提出了一种新颖的和独特的方法来通过考虑在ode求解器的结束时间$ t $上的分布来模拟节点的不确定性。所提出的方法,潜在的时间节点(LT节点)将$ T $视为潜在变量,并应用贝叶斯学习,以获得超过数据的$ $ $。特别地,我们使用变分推理来学习近似后的后验和模型参数。通过考虑来自后部的不同样本的节点表示来完成预测,并且可以使用单个向前通过有效地完成。由于$ t $隐含地定义节点的深度,超过$ t $的后部分发也会有助于节点的模型选择。我们还提出了一种自适应潜在的时间节点(Alt-Node),其允许每个数据点在终点上具有不同的后分布。 Alt-Node使用摊销变分推理来使用推理网络学习近似后的后验。我们展示了通过合成和几个现实世界图像分类数据的实验来建立不确定性和鲁棒性的提出方法的有效性。
translated by 谷歌翻译
目前,难以获得贝叶斯方法深入学习的好处,这允许明确的知识规范,准确地捕获模型不确定性。我们呈现先前数据拟合网络(PFN)。 PFN利用大规模机器学习技术来近似一组一组后索。 PFN唯一要求工作的要求是能够从先前分配通过监督的学习任务(或函数)来采样。我们的方法将后近似的目标重新定为具有带有值的输入的监督分类问题:它反复从先前绘制任务(或功能),从中绘制一组数据点及其标签,掩盖其中一个标签并学习基于其余数据点的设定值输入对其进行概率预测。呈现来自新的监督学习任务的一组样本作为输入,PFNS在单个前向传播中对任意其他数据点进行概率预测,从而学习到近似贝叶斯推断。我们展示了PFN可以接近完全模仿高斯过程,并且还可以实现高效的贝叶斯推理对难以处理的问题,与当前方法相比,多个设置中有超过200倍的加速。我们在非常多样化的地区获得强烈的结果,如高斯过程回归,贝叶斯神经网络,小型表格数据集的分类,以及少量图像分类,展示了PFN的一般性。代码和培训的PFN在https://github.com/automl/transformerscandobayesianinference发布。
translated by 谷歌翻译
Accurate uncertainty quantification is a major challenge in deep learning, as neural networks can make overconfident errors and assign high confidence predictions to out-of-distribution (OOD) inputs. The most popular approaches to estimate predictive uncertainty in deep learning are methods that combine predictions from multiple neural networks, such as Bayesian neural networks (BNNs) and deep ensembles. However their practicality in real-time, industrial-scale applications are limited due to the high memory and computational cost. Furthermore, ensembles and BNNs do not necessarily fix all the issues with the underlying member networks. In this work, we study principled approaches to improve uncertainty property of a single network, based on a single, deterministic representation. By formalizing the uncertainty quantification as a minimax learning problem, we first identify distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data, as a necessary condition for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation. We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs with two simple changes: (1) applying spectral normalization to hidden weights to enforce bi-Lipschitz smoothness in representations and (2) replacing the last output layer with a Gaussian process layer. On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection. Furthermore, SNGP provides complementary benefits to popular techniques such as deep ensembles and data augmentation, making it a simple and scalable building block for probabilistic deep learning. Code is open-sourced at https://github.com/google/uncertainty-baselines
translated by 谷歌翻译
由于其数据效率,贝叶斯优化已经出现在昂贵的黑盒优化的最前沿。近年来,关于新贝叶斯优化算法及其应用的发展的研究激增。因此,本文试图对贝叶斯优化的最新进展进行全面和更新的调查,并确定有趣的开放问题。我们将贝叶斯优化的现有工作分为九个主要群体,并根据所提出的算法的动机和重点。对于每个类别,我们介绍了替代模型的构建和采集功能的适应的主要进步。最后,我们讨论了开放的问题,并提出了有希望的未来研究方向,尤其是在分布式和联合优化系统中的异质性,隐私保护和公平性方面。
translated by 谷歌翻译
考虑到其协变量$ \ boldsymbol x $的连续或分类响应变量$ \ boldsymbol y $的分布是统计和机器学习中的基本问题。深度神经网络的监督学习算法在预测给定$ \ boldsymbol x $的$ \ boldsymbol y $的平均值方面取得了重大进展,但是他们经常因其准确捕捉预测的不确定性的能力而受到批评。在本文中,我们引入了分类和回归扩散(卡)模型,该模型结合了基于扩散的条件生成模型和预训练的条件估计器,以准确预测给定$ \ boldsymbol y $的分布,给定$ \ boldsymbol x $。我们证明了通过玩具示例和现实世界数据集的有条件分配预测的卡片的出色能力,实验结果表明,一般的卡在一般情况下都优于最先进的方法,包括基于贝叶斯的神经网络的方法专为不确定性估计而设计,尤其是当给定$ \ boldsymbol y $的条件分布给定的$ \ boldsymbol x $是多模式时。
translated by 谷歌翻译
条件神经过程(CNP; Garnelo等,2018a)是元学习模型,它利用深度学习的灵活性来产生良好的预测,并自然处理网格和缺失的数据。 CNPS缩放到大型数据集并轻松训练。由于这些功能,CNP似乎非常适合来自环境科学或医疗保健的任务。不幸的是,CNP不会产生相关的预测,从而使它们从根本上不适合许多估计和决策任务。例如,预测热浪或洪水需要在时间和空间中对温度或降水的依赖性进行建模。建模输出依赖性的现有方法,例如神经过程(NPS; Garnelo等,2018b)或FullConvgNP(Bruinsma等,2021),要么是复杂的训练或过于昂贵的。需要的是一种提供依赖预测的方法,但可以易于训练和计算障碍。在这项工作中,我们提出了一类新的神经过程模型,这些模型可以简单且可扩展,从而提供相关的预测并支持确切的最大似然训练。我们通过使用可逆输出转换来扩展提出的模型,以捕获非高斯输出分布。我们的模型可以用于需要相关功能样本的下游估计任务中。通过考虑输出依赖性,我们的模型在合成和真实数据的一系列实验上显示出改进的预测性能。
translated by 谷歌翻译
量化监督学习模型的不确定性在制定更可靠的预测方面发挥着重要作用。认知不确定性,通常是由于对模型的知识不足,可以通过收集更多数据或精炼学习模型来减少。在过去的几年里,学者提出了许多认识的不确定性处理技术,这些技术可以大致分为两类,即贝叶斯和集合。本文对过去五年来提供了对监督学习的认识性不确定性学习技术的全面综述。因此,我们首先,将认知不确定性分解为偏见和方差术语。然后,介绍了认知不确定性学习技术以及其代表模型的分层分类。此外,提出了几种应用,例如计算机视觉(CV)和自然语言处理(NLP),然后讨论研究差距和可能的未来研究方向。
translated by 谷歌翻译
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often referred to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular.
translated by 谷歌翻译
贝叶斯优化(BO)已成为许多昂贵现实世界功能的全球优化的流行策略。与普遍认为BO适合优化黑框功能的信念相反,它实际上需要有关这些功能特征的域知识才能成功部署BO。这样的领域知识通常表现在高斯流程先验中,这些先验指定了有关功能的初始信念。但是,即使有专家知识,选择先验也不是一件容易的事。对于复杂的机器学习模型上的超参数调谐问题尤其如此,在这种模型中,调整目标的景观通常很难理解。我们寻求一种设定这些功能性先验的替代实践。特别是,我们考虑了从类似功能的数据中,使我们可以先验地进行更紧密的分布。从理论上讲,我们与预先训练的先验表示对BO的遗憾。为了验证我们在现实的模型培训设置中的方法,我们通过训练在流行图像和文本数据集上的数以万计的近状态模型配置来收集了大型多任务超参数调谐数据集,以及蛋白质序列数据集。我们的结果表明,平均而言,我们的方法能够比最佳竞争方法更有效地定位良好的超参数。
translated by 谷歌翻译
在最近的文献中,在最近的文献中已经过度研究了不确定性估计,通常可以被归类为炼体不确定性和认知不确定性。在当前的炼拉内不确定性估计框架中,往往忽略了炼拉线性的不确定性是数据的固有属性,只能用一个无偏见的Oracle模型正确估计。由于在大多数情况下,Oracle模型无法访问,我们提出了一个新的采样和选择策略,在火车时间近似甲骨文模型以实现炼梯不确定性估计。此外,我们在基于双头的异源型梯级不确定性估计框架中显示了一种琐碎的解决方案,并引入了新的不确定性一致性损失,以避免它。对于认知不确定性估算,我们认为条件潜在变量模型中的内部变量是模拟预测分布的另一个认识性的不确定性,并探索了关于隐藏的真实模型的有限知识。我们验证了我们对密集预测任务的观察,即伪装对象检测。我们的研究结果表明,我们的解决方案实现了准确的确定性结果和可靠的不确定性估算。
translated by 谷歌翻译
贝叶斯神经网络具有潜在变量(BNN + LVS)通过明确建模模型不确定性(通过网络权重)和环境暂停(通过潜在输入噪声变量)来捕获预测的不确定性。在这项工作中,我们首先表明BNN + LV具有严重形式的非可识别性:可以在模型参数和潜在变量之间传输解释性,同时拟合数据。我们证明,在无限数据的极限中,网络权重和潜变量的后部模式从地面真理渐近地偏离。由于这种渐近偏差,传统的推理方法可以在实践中,产量参数概括不确定和不确定的不确定性。接下来,我们开发一种新推断过程,明确地减轻了训练期间不可识别性的影响,并产生高质量的预测以及不确定性估计。我们展示我们的推理方法在一系列合成和实际数据集中改善了基准方法。
translated by 谷歌翻译