在最近的文献中,在最近的文献中已经过度研究了不确定性估计,通常可以被归类为炼体不确定性和认知不确定性。在当前的炼拉内不确定性估计框架中,往往忽略了炼拉线性的不确定性是数据的固有属性,只能用一个无偏见的Oracle模型正确估计。由于在大多数情况下,Oracle模型无法访问,我们提出了一个新的采样和选择策略,在火车时间近似甲骨文模型以实现炼梯不确定性估计。此外,我们在基于双头的异源型梯级不确定性估计框架中显示了一种琐碎的解决方案,并引入了新的不确定性一致性损失,以避免它。对于认知不确定性估算,我们认为条件潜在变量模型中的内部变量是模拟预测分布的另一个认识性的不确定性,并探索了关于隐藏的真实模型的有限知识。我们验证了我们对密集预测任务的观察,即伪装对象检测。我们的研究结果表明,我们的解决方案实现了准确的确定性结果和可靠的不确定性估算。
translated by 谷歌翻译
突出物体检测本质上是主观的,这意味着多个估计应与相同的输入图像相关。大多数现有的突出物体检测模型是在点对点估计学习管道的指向点之后确定的,使得它们无法估计预测分布。尽管存在基于潜在的变量模型的随机预测网络来模拟预测变体,但基于单个清洁显着注释的潜在空间在探索显着性的主观性质方面不太可靠,导致效率较低,导致显着性“发散建模”较少。给定多个显着注释,我们通过随机采样介绍一般的分歧建模策略,并将我们的策略应用于基于集合的框架和三个基于变量模型的解决方案。实验结果表明,我们的一般发散模型策略在探索显着性的主观性质方面效果。
translated by 谷歌翻译
Transformer, which originates from machine translation, is particularly powerful at modeling long-range dependencies. Currently, the transformer is making revolutionary progress in various vision tasks, leading to significant performance improvements compared with the convolutional neural network (CNN) based frameworks. In this paper, we conduct extensive research on exploiting the contributions of transformers for accurate and reliable salient object detection. For the former, we apply transformer to a deterministic model, and explain that the effective structure modeling and global context modeling abilities lead to its superior performance compared with the CNN based frameworks. For the latter, we observe that both CNN and transformer based frameworks suffer greatly from the over-confidence issue, where the models tend to generate wrong predictions with high confidence. To estimate the reliability degree of both CNN- and transformer-based frameworks, we further present a latent variable model, namely inferential generative adversarial network (iGAN), based on the generative adversarial network (GAN). The stochastic attribute of the latent variable makes it convenient to estimate the predictive uncertainty, serving as an auxiliary output to evaluate the reliability of model prediction. Different from the conventional GAN, which defines the distribution of the latent variable as fixed standard normal distribution $\mathcal{N}(0,\mathbf{I})$, the proposed iGAN infers the latent variable by gradient-based Markov Chain Monte Carlo (MCMC), namely Langevin dynamics, leading to an input-dependent latent variable model. We apply our proposed iGAN to both fully and weakly supervised salient object detection, and explain that iGAN within the transformer framework leads to both accurate and reliable salient object detection.
translated by 谷歌翻译
现有突出物体检测模型的成功依赖于大像素标记的训练数据集。如何,收集这样的数据集不仅耗时,而且非常昂贵。为了减少标签负担,我们研究半监督的突出物体检测,并通过识别具有较小自信预测的像素来将其作为未标记的数据集像素级置信度估计问题。具体地,我们在有效的潜在空间探索之前引入了一种新的潜在变量模型,以获得有效的潜伏空间探索,导致更可靠的置信度图。通过拟议的策略,未标记的图像可以有效地参与模型培训。实验结果表明,与原始培训数据集仅有1/16的注释,与最先进的完全监督模型相比,所提出的解决方案实现了竞争性能。
translated by 谷歌翻译
视觉变压器网络在许多计算机视觉任务中显示出优越性。在本文中,我们通过在基于信息的基于能量检测之前提出具有潜在变量的新型生成视觉变压器进一步逐步。视觉变压器网络和基于能量的先前模型都是通过Markov链蒙特卡罗的最大似然估计共同训练,其中来自居民后的静缘和先前分布的采样由Langevin Dynamics进行。此外,对于生成视觉变压器,我们可以容易地从图像中获得像素明智的不确定性图,该图像指示对从图像预测显着性的模型置信度。与现有的生成模型不同,该模型定义了潜在变量的先前分配作为简单的各向同性高斯分布,我们的模型使用基于能量的信息性,以捕获数据的潜在空间更具表现力。我们将建议的框架应用于RGB和RGB-D突出对象检测任务。广泛的实验结果表明,我们的框架不仅可以达到准确的显着性预测,而且可以实现与人类感知一致的有意义的不确定性地图。
translated by 谷歌翻译
伪装的物体检测(COD)旨在将伪装的物体掩盖隐藏在环境中,这是由于伪装对象及其周围环境的类似外观而具有挑战性。生物学研究表明深度可以为伪装对象发现提供有用的对象本地化提示。在本文中,我们研究了伪装对象检测的深度贡献,其中利用现有的单目深度估计(MDE)方法产生深度图。由于MDE数据集和我们的COD数据集之间的域间隙,所生成的深度映射不足以直接使用。然后,我们介绍了两个解决方案,以避免嘈杂的深度地图从主导培训过程中。首先,我们介绍了辅助深度估计分支(“ADE”),旨在重新映射深度图。我们发现我们的“生成深度”情景特别需要“Ade”。其次,我们通过生成的对抗性网络引入多模态的信心感知损失函数,以对伪装对象检测的深度的贡献。我们对各种伪装对象检测数据集的广泛实验说明了现有的“传感器深度”的RGB-D分段技术与“生成深度”工作,我们提出的两个解决方案协同工作,实现了伪装对象检测的有效深度贡献探索。
translated by 谷歌翻译
量化监督学习模型的不确定性在制定更可靠的预测方面发挥着重要作用。认知不确定性,通常是由于对模型的知识不足,可以通过收集更多数据或精炼学习模型来减少。在过去的几年里,学者提出了许多认识的不确定性处理技术,这些技术可以大致分为两类,即贝叶斯和集合。本文对过去五年来提供了对监督学习的认识性不确定性学习技术的全面综述。因此,我们首先,将认知不确定性分解为偏见和方差术语。然后,介绍了认知不确定性学习技术以及其代表模型的分层分类。此外,提出了几种应用,例如计算机视觉(CV)和自然语言处理(NLP),然后讨论研究差距和可能的未来研究方向。
translated by 谷歌翻译
常规的显着性预测模型通常会学习从图像到其显着图的确定性映射,因此无法解释人类注意力的主观性质。在本文中,为了模拟视觉显着性的不确定性,我们通过在给定输入图像上学习有条件的概率分布来研究显着性预测问题,并将其视为从显着图中的有条件预测问题,并将显着性预测视为从该过程中的样本预测。学会的分布。具体而言,我们提出了一个生成合作的显着性预测框架,其中有条件的潜在变量模型(LVM)和有条件的基于能量的模型(EBM)经过共同训练以以合作的方式预测显着物体。 LVM用作快速但粗糙的预测指标,可有效地生成初始显着图,然后通过EBM的迭代langevin修订将其作为缓慢但良好的预测指标进行完善。如此粗略的合作显着性预测策略提供了两者中最好的。此外,我们提出了“恢复合作学习”策略,并将其应用于弱监督的显着性预测,其中部分观察到了训练图像的显着性注释。最后,我们发现EBM中学习的能量函数可以用作改进模块,可以完善其他预训练的显着性预测模型的结果。实验结果表明,我们的模型可以生成图像的一组不同和合理的显着性图,并在完全监督和弱监督的显着性预测任务中获得最先进的性能。
translated by 谷歌翻译
在这项工作中,我们使用变分推论来量化无线电星系分类的深度学习模型预测的不确定性程度。我们表明,当标记无线电星系时,个体测试样本的模型后差水平与人类不确定性相关。我们探讨了各种不同重量前沿的模型性能和不确定性校准,并表明稀疏事先产生更良好的校准不确定性估计。使用单个重量的后部分布,我们表明我们可以通过从最低信噪比(SNR)中除去权重来修剪30%的完全连接的层权重,而无需显着损失性能。我们证明,可以使用基于Fisher信息的排名来实现更大程度的修剪,但我们注意到两种修剪方法都会影响Failaroff-Riley I型和II型无线电星系的不确定性校准。最后,我们表明,与此领域的其他工作相比,我们经历了冷的后效,因此后部必须缩小后加权以实现良好的预测性能。我们检查是否调整成本函数以适应模型拼盘可以弥补此效果,但发现它不会产生显着差异。我们还研究了原则数据增强的效果,并发现这改善了基线,而且还没有弥补观察到的效果。我们将其解释为寒冷的后效,因为我们的培训样本过于有效的策划导致可能性拼盘,并将其提高到未来无线电银行分类的潜在问题。
translated by 谷歌翻译
Preys in the wild evolve to be camouflaged to avoid being recognized by predators. In this way, camouflage acts as a key defence mechanism across species that is critical to survival. To detect and segment the whole scope of a camouflaged object, camouflaged object detection (COD) is introduced as a binary segmentation task, with the binary ground truth camouflage map indicating the exact regions of the camouflaged objects. In this paper, we revisit this task and argue that the binary segmentation setting fails to fully understand the concept of camouflage. We find that explicitly modeling the conspicuousness of camouflaged objects against their particular backgrounds can not only lead to a better understanding about camouflage, but also provide guidance to designing more sophisticated camouflage techniques. Furthermore, we observe that it is some specific parts of camouflaged objects that make them detectable by predators. With the above understanding about camouflaged objects, we present the first triple-task learning framework to simultaneously localize, segment, and rank camouflaged objects, indicating the conspicuousness level of camouflage. As no corresponding datasets exist for either the localization model or the ranking model, we generate localization maps with an eye tracker, which are then processed according to the instance level labels to generate our ranking-based training and testing dataset. We also contribute the largest COD testing set to comprehensively analyse performance of the COD models. Experimental results show that our triple-task learning framework achieves new state-of-the-art, leading to a more explainable COD network. Our code, data, and results are available at: \url{https://github.com/JingZhang617/COD-Rank-Localize-and-Segment}.
translated by 谷歌翻译
There are two major types of uncertainty one can model. Aleatoric uncertainty captures noise inherent in the observations. On the other hand, epistemic uncertainty accounts for uncertainty in the model -uncertainty which can be explained away given enough data. Traditionally it has been difficult to model epistemic uncertainty in computer vision, but with new Bayesian deep learning tools this is now possible. We study the benefits of modeling epistemic vs. aleatoric uncertainty in Bayesian deep learning models for vision tasks. For this we present a Bayesian deep learning framework combining input-dependent aleatoric uncertainty together with epistemic uncertainty. We study models under the framework with per-pixel semantic segmentation and depth regression tasks. Further, our explicit uncertainty formulation leads to new loss functions for these tasks, which can be interpreted as learned attenuation. This makes the loss more robust to noisy data, also giving new state-of-the-art results on segmentation and depth regression benchmarks.
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
深度展开是一种基于深度学习的图像重建方法,它弥合了基于模型和纯粹的基于深度学习的图像重建方法之间的差距。尽管深层展开的方法实现了成像问题的最新性能,并允许将观察模型纳入重建过程,但它们没有提供有关重建图像的任何不确定性信息,这严重限制了他们在实践中的使用,尤其是用于安全 - 关键成像应用。在本文中,我们提出了一个基于学习的图像重建框架,该框架将观察模型纳入重建任务中,并能够基于深层展开和贝叶斯神经网络来量化认知和核心不确定性。我们证明了所提出的框架在磁共振成像和计算机断层扫描重建问题上的不确定性表征能力。我们研究了拟议框架提供的认知和态度不确定性信息的特征,以激发未来的研究利用不确定性信息来开发更准确,健壮,可信赖,不确定性,基于学习的图像重建和成像问题的分析方法。我们表明,所提出的框架可以提供不确定性信息,同时与最新的深层展开方法实现可比的重建性能。
translated by 谷歌翻译
不确定性量化对于机器人感知至关重要,因为过度自信或点估计人员可以导致环境和机器人侵犯和损害。在本文中,我们评估了单视图监督深度学习中的不确定量化的可扩展方法,特别是MC辍学和深度集成。特别是对于MC辍学,我们探讨了阵列在架构中不同级别的效果。我们表明,在编码器的所有层中添加丢失会带来比文献中的其他变化更好的结果。此配置类似地执行与Deep Ensembles具有更低的内存占用,这是相关的简单。最后,我们探讨了伪RGBD ICP的深度不确定性,并展示其估计具有实际规模的准确的双视图相对运动的可能性。
translated by 谷歌翻译
以知情方式监测和管理地球林是解决生物多样性损失和气候变化等挑战的重要要求。虽然森林评估的传统或空中运动提供了在区域一级分析的准确数据,但将其扩展到整个国家,以外的高度分辨率几乎不可能。在这项工作中,我们提出了一种贝叶斯深度学习方法,以10米的分辨率为全国范围的森林结构变量,使用自由可用的卫星图像作为输入。我们的方法将Sentinel-2光学图像和Sentinel-1合成孔径雷达图像共同变换为五种不同的森林结构变量的地图:95th高度百分位,平均高度,密度,基尼系数和分数盖。我们从挪威的41个机载激光扫描任务中培训和测试我们的模型,并证明它能够概括取消测试区域,从而达到11%和15%之间的归一化平均值误差,具体取决于变量。我们的工作也是第一个提出贝叶斯深度学习方法的工作,以预测具有良好校准的不确定性估计的森林结构变量。这些提高了模型的可信度及其适用于需要可靠的信心估计的下游任务,例如知情决策。我们提出了一组广泛的实验,以验证预测地图的准确性以及预测的不确定性的质量。为了展示可扩展性,我们为五个森林结构变量提供挪威地图。
translated by 谷歌翻译
The problem of detecting the Out-of-Distribution (OoD) inputs is of paramount importance for Deep Neural Networks. It has been previously shown that even Deep Generative Models that allow estimating the density of the inputs may not be reliable and often tend to make over-confident predictions for OoDs, assigning to them a higher density than to the in-distribution data. This over-confidence in a single model can be potentially mitigated with Bayesian inference over the model parameters that take into account epistemic uncertainty. This paper investigates three approaches to Bayesian inference: stochastic gradient Markov chain Monte Carlo, Bayes by Backpropagation, and Stochastic Weight Averaging-Gaussian. The inference is implemented over the weights of the deep neural networks that parameterize the likelihood of the Variational Autoencoder. We empirically evaluate the approaches against several benchmarks that are often used for OoD detection: estimation of the marginal likelihood utilizing sampled model ensemble, typicality test, disagreement score, and Watanabe-Akaike Information Criterion. Finally, we introduce two simple scores that demonstrate the state-of-the-art performance.
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
随机过程提供了数学上优雅的方式模型复杂数据。从理论上讲,它们为可以编码广泛有趣的假设的功能类提供了灵活的先验。但是,实际上,难以通过优化或边缘化来有效推断,这一问题进一步加剧了大数据和高维输入空间。我们提出了一种新颖的变性自动编码器(VAE),称为先前的编码变量自动编码器($ \ pi $ vae)。 $ \ pi $ vae是有限的交换且Kolmogorov一致的,因此是一个连续的随机过程。我们使用$ \ pi $ vae学习功能类的低维嵌入。我们表明,我们的框架可以准确地学习表达功能类,例如高斯流程,也可以学习函数的属性以启用统计推断(例如log高斯过程的积分)。对于流行的任务,例如空间插值,$ \ pi $ vae在准确性和计算效率方面都达到了最先进的性能。也许最有用的是,我们证明了所学的低维独立分布的潜在空间表示提供了一种优雅,可扩展的方法,可以在概率编程语言(例如Stan)中对随机过程进行贝叶斯推断。
translated by 谷歌翻译
We introduce ensembles of stochastic neural networks to approximate the Bayesian posterior, combining stochastic methods such as dropout with deep ensembles. The stochastic ensembles are formulated as families of distributions and trained to approximate the Bayesian posterior with variational inference. We implement stochastic ensembles based on Monte Carlo dropout, DropConnect and a novel non-parametric version of dropout and evaluate them on a toy problem and CIFAR image classification. For CIFAR, the stochastic ensembles are quantitatively compared to published Hamiltonian Monte Carlo results for a ResNet-20 architecture. We also test the quality of the posteriors directly against Hamiltonian Monte Carlo simulations in a simplified toy model. Our results show that in a number of settings, stochastic ensembles provide more accurate posterior estimates than regular deep ensembles.
translated by 谷歌翻译
最近出现了一系列用于估计具有单个正向通行证的深神经网络中的认知不确定性的新方法,最近已成为贝叶斯神经网络的有效替代方法。在信息性表示的前提下,这些确定性不确定性方法(DUM)在检测到分布(OOD)数据的同时在推理时添加可忽略的计算成本时实现了强大的性能。但是,目前尚不清楚dums是否经过校准,可以无缝地扩展到现实世界的应用 - 这都是其实际部署的先决条件。为此,我们首先提供了DUMS的分类法,并在连续分配转移下评估其校准。然后,我们将它们扩展到语义分割。我们发现,尽管DUMS尺度到现实的视觉任务并在OOD检测方面表现良好,但当前方法的实用性受到分配变化下的校准不良而破坏的。
translated by 谷歌翻译