评估当前序列或对话级Chatbots(例如Impathetic Open-Domain对话模型)的一个挑战是确定Chatbot是否以情绪一致的方式执行。最近的工作仅在对话之间的语境一致性,语言流畅性,响应多样性或逻辑自我一致性的方面进行评估。这项工作建议培训评估员以确定聊天禁令的情绪一致性。
translated by 谷歌翻译
在本文中,我们描述了一种数据驱动的方法,用于开发艾米丽(Emily),一种情绪感染的开放域聊天机器人。提出的数据增强方法可以从多转话对话中明确模拟阳性过渡(PT)情感数据。我们使用PT情感数据构建对话语料库,并将其发布供公众使用。通过使用生产的PT增强对话进行验证的对话模型,我们能够开发一种情感感染性的开放式聊天机器人,该聊天机器人在各种情绪影响度指标中表现出几乎人类的表现。我们对艾米丽(Emily)进行评估,以针对一些最先进的(SOTA)开放域聊天机器人,并显示拟议方法的有效性。
translated by 谷歌翻译
个性化响应选择系统通常基于角色。但是,角色和同理心之间存在共同关联,这些系统在这些系统中并不是很好。本文试图通过提出一套融合策略来解决这些问题,以捕捉角色,情感和话语中的综合信息之间的相互作用。关于角色chat数据集的消融研究表明,结合情绪和累积可提高响应选择的准确性。我们将融合策略和概念流编码结合在一起,以训练基于BERT的模型,该模型的表现优于原始角色的利润率大于2.3%,而修订后的角色的命中率是1.9%(前1位准确性),在角色chat数据集上实现新的最新性能。
translated by 谷歌翻译
许多社会语言线索用于对话分析,例如情感,情绪和对话行为。一个基本社会线索是礼貌的,这是在语言上具有可用于对话分析的性质。这篇短文介绍了一些礼貌情感对话行为的一些简短调查结果,在那里,我们可以将这些社会语言学线索之间的关系债券相关联。我们发现,情感征集和厌恶的话语更可能是不礼貌的,而幸福和悲伤是礼貌的。对话行为,通知和共同体发生了类似的现象包含许多礼貌的话语,而不是问题和指令。最后,我们将结束这些发现的未来工作。
translated by 谷歌翻译
良好的善解人意对话系统应首先跟踪并理解用户的情绪,然后以适当的情感回复。但是,目前对此任务的方法要么集中于提高对用户情绪的理解或提出更好的反应策略,而且很少有作品同时考虑这两种工作。我们的工作试图填补这一空缺。受到任务导向对话系统的启发,我们提出了一种具有情感感知对话管理的新颖善解人意的响应生成模型。情绪感知对话管理包含两个部分:(1)情绪状态跟踪保持当前用户的情绪状态,(2)善解人意的对话策略选择预测目标情绪和用户的意图,基于情绪状态跟踪的结果。然后,预测信息用于指导响应的产生。实验结果表明,与自动评估和人类评估下的几个基准相比,动态管理不同的信息可以帮助模型产生更多的移情反应。
translated by 谷歌翻译
对于谈话情感认可的任务,最近的作品专注于发言者关系建模,但忽略了话语的情感倾向的作用。在本文中,我们提出了一种新的表达范例的句子级情绪定向向量,以模拟句子之间情绪的潜在相关性vectors。基于它,我们设计了一种情感识别模型,它从语言模型中提取句子级情感方向向量,并从对话情绪分析模型联合学习,提取句子级情绪方向向量,以识别谈话者在谈话中的情绪导向。我们在两个基准数据集中进行实验,并将它们与五个基线模型进行比较。实验结果表明,我们的模型对所有数据集具有更好的性能。
translated by 谷歌翻译
在多方对话中有效地发现发言者的情绪状态是设计人类类似的会话代理商的重要性。在谈话期间,扬声器的认知状态通常由于某些过去的话语而改变,这可能导致他们的情绪状态的翻转。因此,在对话期间发现扬声器情感翻转背后的原因(触发)对于解释个人话语的情感标签至关重要。在本文中,除了解决对话中的情感认可的任务(ERC),我们介绍了一种新的任务 - 情感 - 翻转推理(EFR),旨在识别过去的话语,这引发了一个人的情绪状态以在一定时间翻转。我们提出了一个掩蔽的存储器网络来解决前者和基于变换器的网络的后一种任务。为此,我们考虑融合的基准情感识别数据集,用于ERC任务的多方对话,并使用EFR的新地基标签增强它。与五个最先进的模型进行了广泛的比较,表明我们对两个任务的模型的表现。我们进一步提出了轶事证据和定性和定量误差分析,以支持与基线相比模型的优势。
translated by 谷歌翻译
善解人意的回应的任务旨在了解说话者对自己的经历表达的感觉,然后适当地回复演讲者。为了解决任务,必须对话的内容情绪对偶性进行建模,该对话是由内容视图组成的(即描述了哪些个人经历​​)和情感观点(即,演讲者对这些经验的感觉)。为此,我们设计了一个框架,以通过分离促进响应生成来建模内容情感二元性(CEDUAL)。有了分解,我们从内容和情感视图中编码对话历史,然后根据删除表示形式产生善解人意的响应,从而可以将对话历史记录的内容和情感信息嵌入到生成的响应中。基准数据集促进性的实验表明,cedual模型在自动和人类指标上都达到了最先进的性能,并且它还比以前的方法产生更多的促进响应。
translated by 谷歌翻译
提高对话系统的用户体验通常需要密集的开发人员努力读取对话日志,运行统计分析,并激活系统缺点的相对重要性。本文介绍了一种自动分析对话日志的新方法,了解用户系统交互与总体对话质量之间的关系。与在话语级别质量预测上的事先工作不同,我们的方法了解每个互动的影响,没有话语级注释的整体用户评级,允许基于经验证据和低成本获得所得模型结论。我们的模型识别与Chatbot设置中的与整体对话质量有着强烈相关的交互。实验表明,我们模型的自动分析同意专家判决,使这项工作首先表明这种弱监督的话语级质量预测学习是高度可取的。
translated by 谷歌翻译
没有一致响应的对话系统并不令人着迷。在这项研究中,我们建立了一个对话系统,可以根据给定的角色设置(角色)响应以带来一致性。考虑到语言模型迅速增加的趋势,我们提出了一种使用迅速调整的方法,该方法在预训练的大规模语言模型上使用了低学习成本。英语和日语中自动和手动评估的结果表明,可以使用比微调更少的计算资源来构建具有更自然和个性化响应的对话系统。
translated by 谷歌翻译
谈话中的情感认可(ERC)是一个重要而积极的研究问题。最近的工作表明了ERC任务使用多种方式(例如,文本,音频和视频)的好处。在谈话中,除非一些外部刺激唤起改变,否则参与者倾向于维持特定的情绪状态。在谈话中持续的潮起潮落和情绪流动。灵感来自这种观察,我们提出了一种多模式ERC模型,并通过情感转换组件增强。所提出的情感移位组件是模块化的,可以添加到任何现有的多模式ERC模型(具有几种修改),以改善情绪识别。我们尝试模型的不同变体,结果表明,包含情感移位信号有助于模型以优于ERC的现有多模型模型,从而展示了MOSEI和IEMOCAP数据集的最先进的性能。
translated by 谷歌翻译
创建可以对对话做出适当反应又理解复杂人类语言倾向和社会线索的代理人在NLP社区中一直是一项艰巨的挑战。最近的研究支柱围绕着对话中的情感识别(ERC);情感识别的子场地,重点是包含两个或更多话语的对话或对话。在这项工作中,我们探讨了一种ERC的方法,该方法利用了对话中神经嵌入的使用以及复杂的结构。我们在称为概率软逻辑(PSL)的框架中实现了我们的方法,该框架是一种使用一阶逻辑规则的声明的模板语言,该语言与数据结合时,定义了特定类别的图形模型。此外,PSL为将神经模型的结果纳入PSL模型提供了功能。这使我们的模型可以利用先进的神经方法,例如句子嵌入以及对话结构的逻辑推理。我们将我们的方法与最先进的纯神经ERC系统进行了比较,并将几乎提高了20%。通过这些结果,我们对DailyDialog对话数据集提供了广泛的定性和定量分析。
translated by 谷歌翻译
谈话中的情感认可(ERC)旨在检测每个话语的情绪标签。最近的研究有所动机,这些研究已经证明,以有意义的顺序喂养训练示例而不是随机考虑它们可以提高模型的性能,我们提出了一个ERC导向的混合课程学习框架。我们的框架由两种课程组成:(1)会话级课程(CC); (2)话语级课程(UC)。在CC中,我们根据对话中的“情绪移位”频率构建一个难度测量值,然后根据难度测量仪返回的难度得分,对话在“易于硬”模式中。对于UC来说,它是从情绪相似性的角度实施的,这逐渐加强了识别令人困惑的情绪的模型的能力。通过拟议的模型 - 不可知的混合课程学习策略,我们观察大量性能提升了广泛的现有ERC模型,我们能够在四个公共ERC数据集上实现新的最先进的结果。
translated by 谷歌翻译
在这项工作中,我们为数字教练提供了一个新的数据集和一种计算策略,旨在指导用户练习自我附加疗法的方案。我们的框架增强了基于规则的对话代理,具有深入学习分类器,可在用户的文本响应中识别潜在的情感,以及一种深入学习的辅助检索方法,用于制作新颖,流利和善解人意的话语。我们还制作了用户可以选择与之互动的类似人类的角色。我们的目标是在虚拟疗法课程中获得高水平的参与度。我们在n = 16名参与者的非临床试验中评估了我们的框架的有效性,在五天的时间里,所有人都至少与代理商进行了四次相互作用。我们发现,与简单的基于规则的框架相比,我们的平台在同理心,用户参与度和实用性方面的评分始终高。最后,我们提供指南,以根据收到的反馈来进一步改善应用程序的设计和性能。
translated by 谷歌翻译
在本文中,我们介绍了基于大型预训练的语言模型(PLM)pangu-alpha(Zeng等,2021)的中国预训练的开放域对话生成模型。与其他对大量对话数据进行培训的预训练的对话模型不同,我们旨在通过继承PLM的有价值的语言能力和知识来构建强大的对话模型,并以相对较少的数据和计算成本构建强大的对话模型。为此,我们训练大型PLM Pangu-Alpha的Pangu-bot,该机器人已被证明在各种中国自然语言任务上表现出色。我们研究了pangu-bot产生的响应的不同方面,包括响应质量,知识和安全性。我们表明,Pangu-Bot优于最先进的中国对话系统(CDIALGPT(Wang等,2020),Eva(Zhou等,2021),EVA2.0(Gu等,2022)) W.R.T.以上三个方面。我们还证明,可以轻松地部署pangu-bot,以在没有进一步训练的情况下产生情感反应。在整个经验分析中,我们还指出,Pangu-bot响应质量,知识正确性和安全性仍然远非完美,进一步的探索对于建立可靠且智能的对话系统是必不可少的。我们的型号和代码将在https://github.com/huawei-noah/pretretaining-language-model/tree/master/master/pangu-bot上提供。
translated by 谷歌翻译
对机器的人类谈话的一个重要方面是与同理心交谈,这是理解用户的情绪并适当地响应。最近的神经谈话模型,试图产生同情响应,要么集中在给定的情绪到给定的情绪,或结合当前的用户情绪状态。然而,这些方法不会因用户对生成的反应感受的因素。因此,在本文中,我们提出了表达的情绪展望,这是一种模拟未来用户情绪状态的同情心的新型视角。简而言之,情绪上方是在加强学习框架下的奖励功能,当生成的话语改善用户的情绪时,对生成模型提供更高的奖励。我们实施并评估了三种不同的情绪考虑实现,并经验证明我们的建议方法可以产生比多任务学习等其他竞争基础的竞争,相关和流畅的响应。
translated by 谷歌翻译
我们的目标是克服当前对话系统的响应中缺乏多样性,并开发作为对话伙伴的对话系统。我们提出了一个生成器评估器模型,该模型评估了响应生成器生成的多个响应,并选择了评估器的最佳响应。通过产生多个响应,我们获得了多种响应。我们进行人体评估,将提议系统的输出与基线系统的输出进行比较。人类评估的结果表明,拟议系统的响应通常被认为比基线系统更好,并指出了拟议方法的有效性。
translated by 谷歌翻译
因果情绪综合(CEE)旨在发现对话说法中情感背后的潜在原因。先前的工作将CEE正式为独立的话语对分类问题,并忽略了情感和说话者信息。从新的角度来看,本文考虑了联合框架中的CEE。我们同步对多种话语进行分类,以捕获全球观点中的话语之间的相关性,并提出一个两条注意力模型(TSAM),以有效地模拟说话者在对话历史上的情感影响。具体而言,TSAM包括三个模块:情感注意网络(EAN),说话者注意网络(SAN)和交互模块。 EAN和SAN并行结合了情感和说话者信息,随后的交互模块通过相互的Biaffine转换有效地互换了EAN和SAN之间的相关信息。广泛的实验结果表明,我们的模型实现了新的最新性能(SOTA)性能,并且表现出色的基准。
translated by 谷歌翻译
在对话系统中,具有类似语义的话语可能在不同的环境下具有独特的情绪。因此,与扬声器依赖关系建模的远程语境情绪关系在对话情绪识别中起重要作用。同时,区分不同的情绪类别是非微不足道的,因为它们通常具有语义上类似的情绪。为此,我们采取监督对比学习,使不同的情绪相互排斥,以更好地识别类似的情绪。同时,我们利用辅助响应生成任务来增强模型处理上下文信息的能力,从而强迫模型在不同的环境中识别与类似语义的情绪。为了实现这些目标,我们使用预先训练的编码器 - 解码器模型架作为我们的骨干模型,因为它非常适合理解和生成任务。四个数据集的实验表明,我们所提出的模型在对话情绪认可中获得比最先进的模型更有利的结果。消融研究进一步展示了监督对比损失和生成损失的有效性。
translated by 谷歌翻译
Causal Emotion Entailment aims to identify causal utterances that are responsible for the target utterance with a non-neutral emotion in conversations. Previous works are limited in thorough understanding of the conversational context and accurate reasoning of the emotion cause. To this end, we propose Knowledge-Bridged Causal Interaction Network (KBCIN) with commonsense knowledge (CSK) leveraged as three bridges. Specifically, we construct a conversational graph for each conversation and leverage the event-centered CSK as the semantics-level bridge (S-bridge) to capture the deep inter-utterance dependencies in the conversational context via the CSK-Enhanced Graph Attention module. Moreover, social-interaction CSK serves as emotion-level bridge (E-bridge) and action-level bridge (A-bridge) to connect candidate utterances with the target one, which provides explicit causal clues for the Emotional Interaction module and Actional Interaction module to reason the target emotion. Experimental results show that our model achieves better performance over most baseline models. Our source code is publicly available at https://github.com/circle-hit/KBCIN.
translated by 谷歌翻译