平衡和步态障碍是跌倒的第二主要原因,随之而来的是伤害,据报道是世界各地的主要公共卫生问题。对于不需要机械支持的患者,纤维触及反馈界面已被证明是恢复平衡的成功方法。大多数现有策略评估躯干或头部倾斜,速度或足底力,仅限于立场的分析。另一方面,平衡控制的中心是需要将身体的压力中心(COP)保持在支撑多边形(SP)的可行限制,如站立或前进到新的SP(如步行中)。因此,本文提出了一项探索性研究,以研究是否可以在步行过程中使用速函反馈来领导人类警察。引入了Ergotac-belt纤维触觉设备,以指示用户在前后轴和中侧轴上的方向。这里采用了一种预期策略,以使用户有足够的时间对刺激做出反应。对十个健康受试者进行的实验证明了该设备沿预定义的参考路径指导用户的COP具有有希望的能力,其性能与视觉反馈相似。未来的发展将调查我们的战略和设备,以指导老年人或前庭障碍的人的警察,他们可能不知道或能够弄清楚安全且人体工程学的COP道路。
translated by 谷歌翻译
反复出现或持续的尴尬身体姿势是与工作相关的肌肉骨骼疾病(MSD)发展最常见的危险因素之一。为了防止工人采用有害配置,也可以指导他们朝着更符合人体工程学的配置,可穿戴触觉设备可能是理想的解决方案。在本文中,在肢体姿势校正环境中评估了一个称为Ergotac的纤维ac式单元,称为袖口和称为袖口的滑动单元。使用定量与任务相关的指标和主观定量评估,比较了在十二个健康受试者中比较了他们提供单关节(肩膀或膝盖)和多关节(肩膀和膝盖)指导的能力。还建立了一个集成的环境,以简化参与传感器和反馈系统之间的沟通和数据共享。结果显示出两种设备的良好可接受性和直觉。 Ergotac似乎是肩膀的合适反馈装置,而袖口可能是膝盖的有效解决方案。这项比较研究虽然是初步的,但却是对两种设备进行有效全身姿势校正的潜在整合的促进,目的是开发反馈和辅助设备,以提高工人对危险工作条件的认识,从而防止MSD。
translated by 谷歌翻译
Just like in humans vision plays a fundamental role in guiding adaptive locomotion, when designing the control strategy for a walking assistive technology, Computer Vision may bring substantial improvements when performing an environment-based assistance modulation. In this work, we developed a hip exosuit controller able to distinguish among three different walking terrains through the use of an RGB camera and to adapt the assistance accordingly. The system was tested with seven healthy participants walking throughout an overground path comprising of staircases and level ground. Subjects performed the task with the exosuit disabled (Exo Off), constant assistance profile (Vision Off ), and with assistance modulation (Vision On). Our results showed that the controller was able to promptly classify in real-time the path in front of the user with an overall accuracy per class above the 85%, and to perform assistance modulation accordingly. Evaluation related to the effects on the user showed that Vision On was able to outperform the other two conditions: we obtained significantly higher metabolic savings than Exo Off, with a peak of about -20% when climbing up the staircase and about -16% in the overall path, and than Vision Off when ascending or descending stairs. Such advancements in the field may yield to a step forward for the exploitation of lightweight walking assistive technologies in real-life scenarios.
translated by 谷歌翻译
外骨骼和矫形器是可穿戴移动系统,为用户提供机械益处。尽管在过去几十年中有重大改进,但该技术不会完全成熟,以便采用剧烈和非编程任务。为了适应这种功能不全,需要分析和改进该技术的不同方面。许多研究一直在努力解决外骨骼的某些方面,例如,机构设计,意向预测和控制方案。但是,大多数作品都专注于设计或应用的特定元素,而无需提供全面的审查框架。本研究旨在分析和调查为改进和广泛采用这项技术的贡献方面。为了解决此问题,在引入辅助设备和外骨骼后,将从物理人员 - 机器人接口(HRI)的角度来研究主要的设计标准。通过概述不同类别的已知辅助设备的几个例子,将进一步开发该研究。为了建立智能HRI策略并为用户提供直观的控制,将研究认知HRI。将审查这种策略的各种方法,并提出了意图预测的模型。该模型用于从单个电拍摄(EMG)通道输入的栅极相位。建模结果显示出低功耗辅助设备中单通道输入的潜在使用。此外,所提出的模型可以在具有复杂控制策略的设备中提供冗余。
translated by 谷歌翻译
与工作有关的肌肉骨骼障碍(WMSDS)仍然是欧盟的主要职业安全和健康问题。因此,持续追踪工人对可能导致其发展有贡献的因素的暴露是至关重要的。本文介绍了一种在线方法来监控工人上的运动和动态数量,提供当天在日常工作中所需的物理负荷的估计。定义了一套符合人体工程学的指标,以考虑对WMSD的多个潜在贡献者,也重视工人的主题特定要求。为了评估拟议的框架,考虑到在制造业中代表典型工作活动的任务,对十二人受试者进行了彻底的实验分析。对于每个任务,在统计分析之后,识别更好地解释底层物理负荷的符合人体工程学指标,并通过表面肌电图(SEMG)分析的结果支持。还通过公认的和标准工具进行了比较,以评估工作场所的人体工程学,突出所提出的框架引入的益处。结果证明了拟议框架在识别物理危险因素方面的高潜力,从而采取预防措施。该研究的另一个同样重要的贡献是在人类血管动力学测量中创建一个综合数据库,该测量涉及执行典型工业任务的健康受试者的多个感官数据。
translated by 谷歌翻译
为了在医疗和工业环境中广泛采用可穿戴机器人外骨骼,至关重要的是,它们可以适应性地支持大量运动。我们提出了一种新的人机界面,以同时在一系列“看不见的”步行条件和未用于建立控制界面的“看不见”步行条件和过渡期间同时驱动双侧踝部外骨骼。提出的方法使用人特异性的神经力学模型从测量的肌电图(EMG)和关节角度实时估算生物踝关节扭矩。基于干扰观察者的低级控制器将生物扭矩估计转换为外骨骼命令。我们称此“基于神经力学模型的控制”(NMBC)。 NMBC使六个人能够自愿控制六个步行条件下的双边踝部外骨骼,包括所有中间过渡,即两个步行速度,每个步行速度在三个地面高程中进行,不需要预先定义的扭矩轮廓,也不需要先验选择的神经肌肉肌肉反射规则,或国家机器在文献中很常见。在涉及月球漫步的灵活的运动任务上进行了一个单一的主题案例研究。 NMBC始终启用能够减少生物踝扭矩,以及与非辅助条件相比,在步行条件(24%扭矩; 14%EMG)之间以及步行条件(24%扭矩; 14%EMG)之间的八个踝部肌肉EMG。新型步行条件下的扭矩和EMG减少表明,外骨骼在操作员的神经肌肉系统控制的外观上进行了共生。这为系统地采用可穿戴机器人作为现场医疗和职业环境的一部分开辟了新的途径。
translated by 谷歌翻译
中枢神经系统(CNS)利用预期(APA)和补偿性(CPA)的姿势调整以保持平衡。姿势调整包括质量中心的稳定性(COM)(COM)和身体的压力分布相互影响,如果存在他们俩缺乏表现。任何可预测的或突然的扰动都可能为COM与平衡和身体的均匀压力分布的分歧铺平道路。由于其不良的APA和CPA,并引起了它们的跌倒。神经系统患者跌倒风险的最小化方法正在利用基于扰动的康复,因为它有效地恢复了平衡障碍。根据发现的结果,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现是有效的。介绍新型3 DOF平行操纵器的设计,实现和实验评估,以治疗M. M.的平衡障碍,机器人平台允许角运动脚踝基于其拟人化的自由。赋予上下平台的最终效应分别旨在评估每只脚的压力分布和身体的com。在机器人平台的高级控制中,用于调节任务的难度水平。在这项研究中,在模拟环境中得出并验证了机器人的运动学和动态分析。还通过PID控制器成功实现了对原型的低级控制。每个平台的容量都通过一组实验来评估,考虑评估最终效应器上的脚注和类似对象的压力分布和COM。实验结果表明,这样的系统井井有条,需要通过APA和CPA进行平衡技能培训和评估。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
我们探索Calico是一种微型可重新定位的可穿戴系统,具有快速,精确的运动,用于体内相互作用,驱动和感应。印花布由两轮机器人和一条轨道机制或“铁路”组成,机器人在其上行驶。机器人具有独立的,尺寸很小,并且具有其他传感器扩展选项。轨道系统允许机器人沿着用户的身体移动并到达任何预定位置。它还包括旋转开关以启用复杂的路由选项,当提出发散轨道时。我们报告了印花布的设计和实施,并通过一系列的系统性能评估。然后,我们介绍一些应用程序方案和用户研究,以了解印花布作为舞蹈教练的潜力,并探索对我们情景的定性感知,以告知该领域未来的研究。
translated by 谷歌翻译
智能辅助系统可以导航盲人,但其中大多数只能给出非直觉的提示或效率低下的指导。基于计算机视觉和颤振的编码,本文提出了一个交互式系统,为盲人提供直观的空间认知。与基于语音提示的传统听觉反馈策略不同,本文首先引入了一种振动编码的反馈方法,该方法利用了触觉神经途径,并使用户能够与操纵辅助设备以外的对象进行交互。基于此策略,3D空间对象定位采用了基于RGB-D摄像机的可穿戴视觉模块,这有助于在真实环境中进行准确的感知和快速对象定位。目标盲人的实验结果表明,与主流语音及时反馈方案相比,纤维触觉反馈将任务的完成时间降低了25%。拟议的对象定位系统提供了更直观的空间导航和舒适的耐磨性,以提供盲目帮助。
translated by 谷歌翻译
将触觉反馈从指尖转移到手腕上的重新定位被认为是使与混合现实虚拟环境的触觉相互作用的一种方式,同时使手指免费完成其他任务。我们介绍了一对腕触觉触觉设备以及一个虚拟环境,以研究手指和触觉者之间的各种映射如何影响任务性能。腕部呈现的触觉反馈反映了由食指和拇指控制的虚拟物体和虚拟化头像之间发生的相互作用。我们进行了一项用户研究,比较了四个不同的手指触觉反馈映射和一个无反馈条件作为对照。我们评估了用户通过任务完成时间的指标,手指和虚拟立方体的路径长度以及在指尖处的正常和剪切力的大小来评估了用户执行简单的选择任务的能力。我们发现多次映射是有效的,并且当视觉提示受到限制时会产生更大的影响。我们讨论了方法的局限性,并描述了朝着腕部磨损设备进行多重自由度触觉渲染的下一步步骤,以改善虚拟环境中的任务性能。
translated by 谷歌翻译
促进辅助(AAN)控制旨在通过鼓励患者积极参与促进机器人辅助康复的治疗结果。大多数AAN控制器使用阻抗控制来在目标运动周围创建柔性的力字段,以确保在允许中等运动错误的同时进行跟踪精度。然而,由于控制力场的形状的参数通常根据关于关于对象学习能力的简单假设在线手动调整或在线调整,因此可以限制传统AAN控制器的有效性。在这项工作中,我们提出了一种新颖的自适应AAN控制器,其能够根据每个单独的电动机能力和任务要求自动重塑力场以相位相关的方式重塑力场。该拟议的控制器包括使用路径积分算法的修改策略改进,一种无模型的采样的增强学习方法,该方法实时地学习了特定于主题的阻抗景观,以及嵌入AAN PARADIGM的分层策略参数评估结构通过指定性能驱动的学习目标。通过跑步机培训课程通过具有能够在动力踝足矫形器的协助学习改变的步态模式的跑步机培训课程,通过跑步机培训课程进行实验验证,拟议的控制策略及其促进短期运动适应能力的适应性。
translated by 谷歌翻译
在各种条件下行走期间关节阻抗的知识与临床决策以及机器人步态培训师,腿部假体,腿矫形器和可穿戴外骨骼的发展相关。虽然步行过程中的脚踝阻抗已经通过实验评估,但尚未识别步行期间的膝盖和髋关节阻抗。在这里,我们开发并评估了下肢扰动器,以识别跑步机行走期间髋关节,膝关节和踝关节阻抗。下肢扰动器(Loper)由致动器组成,致动器通过杆连接到大腿。 Loper允许将力扰动施加到自由悬挂的腿上,同时站立在对侧腿上,带宽高达39Hz。在以最小的阻抗模式下行走时,Loper和大腿之间的相互作用力低(<5N),并且对行走图案的效果小于正常行走期间的对象内变异性。使用摆动腿动力学的非线性多体动力学模型,在摆动阶段在速度为0.5米/秒的速度的九个受试者期间估计臀部,膝关节和踝关节阻抗。所识别的模型能够预测实验反应,因为分别占髋部,膝关节和踝部的平均方差为99%,96%和77%。对受试者刚度的平均分别在34-66nm / rad,0-3.5nm / rad,0-3.5nm / rad和2.5-24nm / rad的三个时间点之间变化,分别用于臀部,膝部和踝关节。阻尼分别在1.9-4.6 nms / rad,0.02-0.14 nms / rad和0.2-2.4 nms / rad的0.02-0.14 nms / rad供应到0.2-2.4nms / rad。发达的洛普勒对不受干扰的行走模式具有可忽略的影响,并且允许在摆动阶段识别臀部,膝关节和踝关节阻抗。
translated by 谷歌翻译
本文描述了可以用于控制上限假体的人机界面的新框架。目的是从嘈杂的表面肌电图信号中估算人类的电动机意图,并在存在以前看不见的扰动的情况下,对假体(即机器人)执行电动机意图。该框架包括每个自由度的肌肉弯曲模型,一种学习用于估计用户电机意图的模型的参数值的方法,以及使用从肌肉模型获得的刚度和阻尼值来适应的可变阻抗控制器假体运动轨迹和动力学。我们使用人机界面的模拟版本在强大的人类的背景下进行实验评估我们的框架,以执行主要在手腕中攻击一种自由的任务,并以统一力场的形式考虑外部扰动这将手腕从目标上推开。我们证明我们的框架提供了所需的自适应性能,并且与数据驱动的基线相比,可以大大提高性能。
translated by 谷歌翻译
机器人系统的远程操作用于精确而精致的物体抓握需要高保真的触觉反馈,以获取有关抓握的全面实时信息。在这种情况下,最常见的方法是使用动力学反馈。但是,单个接触点信息不足以检测软件的动态变化形状。本文提出了一个新型的远程触发系统,该系统可为用户的手提供动感和皮肤刺激,以通过灵敏地操纵可变形物体(即移液器)来实现准确的液体分配。实验结果表明,为用户提供多模式触觉反馈的建议方法大大提高了用远程移液器的剂量质量。与纯视觉反馈相比,当用户用多模式触觉界面与视觉反馈混合使用多模式触觉接口时,相对给药误差减少了66 \%,任务执行时间减少了18 \%。在CoVID-19,化学实验,有机材料和伸缩性的抗体测试期间,可以在精致的给药程序中实施该提出的技术。
translated by 谷歌翻译
机器人辅助的微创手术(RMI)缺乏触觉反馈是在手术过程中安全组织处理的潜在障碍。贝叶斯建模理论表明,与没有经验的外科医生相比,在RMIS期间,具有开放或腹腔镜手术经验的外科医生可以发展为组织刚度的先验。为了测试先前的触觉经验是否导致远程操作的力估计能力提高,将33名参与者分配到三个训练条件之一:手动操纵,用力反馈的远程操作或无力反馈的远程操作,并学会了将硅胶样品张紧到一套力值。然后,他们被要求执行张力任务,以及先前未经触觉的任务,而无需反馈而在远程操作下进行不同的力量值。与远程操作组相比,手动组在训练的力量范围之外的张力任务中具有较高的力误差,但在低力水平下,在触诊任务中显示出更好的速度准确性功能。这表明训练方式的动力学会影响远程操作过程中的力估计能力,如果在与任务相同的动态下形成,则可以访问先前的触觉体验。
translated by 谷歌翻译
最近,针对各种实际应用,例如操纵学习,已经广泛探索了触觉手套。以前的手套设备具有不同的力驱动系统,例如形状记忆合金,伺服电动机和气动执行器;但是,这些提议的设备在快速运动,易于繁殖和安全问题方面可能难以置信。在这项研究中,我们提出了Magglove,这是一种具有线性电动机的可移动磁铁机制的新型触觉手套,以解决这些问题。拟议的Magglove设备是佩戴者手背面紧凑的系统,具有很高的响应性,易用性和良好的安全性。提出的设备是自适应的,随着电流流过线圈的大小的修饰。基于我们的评估研究,可以证实所提出的设备可以在给定任务中实现手指运动。因此,Magglove可以为操纵学习任务中的佩戴者学习水平提供量身定制的灵活支持。
translated by 谷歌翻译
对于诸如搜索和救援之类的苛刻情况下,人形生物的部署,高度智能的决策和熟练的感觉运动技能。一个有前途的解决方案是通过远程操作通过互连机器人和人类来利用人类的实力。为了创建无缝的操作,本文提出了一个动态的远程组分框架,该框架将人类飞行员的步态与双皮亚机器人的步行同步。首先,我们介绍了一种方法,以从人类飞行员的垫脚行为中生成虚拟人类步行模型,该模型是机器人行走的参考。其次,步行参考和机器人行走的动力学通过向人类飞行员和机器人施加力来同步,以实现两个系统之间的动态相似性。这使得人类飞行员能够不断感知并取消步行参考和机器人之间的任何异步。得出机器人的一致步骤放置策略是通过步骤过渡来维持动态相似性的。使用我们的人机界面,我们证明了人类飞行员可以通过地位,步行和干扰拒绝实验实现模拟机器人的稳定和同步近距离运行。这项工作为将人类智力和反射转移到人形机器人方面提供了基本的一步。
translated by 谷歌翻译
人类和机器人之间的物理互动可以帮助机器人学习执行复杂的任务。机器人臂通过观察人类在整个任务中指导它的方式来获得信息。虽然先前的作品专注于机器人如何学习,但它同样重要的是,这种学习对人类教师透明。显示机器人不确定性的视觉显示可能会传达此信息;然而,我们假设视觉反馈机制错过了人类和机器人之间的物理连接。在这项工作中,我们提出了一种柔软的触觉显示,它缠绕在机器人臂的表面并符合机器人臂的表面,在现有的触点点添加触觉信号,而不会显着影响相互作用。我们展示了软致动力如何产生突出的触觉信号,同时仍然允许在设备安装中的灵活性。使用心理物理学实验,我们表明用户可以准确地区分包裹展示的通胀水平,平均韦伯分数为11.4%。当我们在机器人操纵器的ARM周围放置包裹的显示器时,用户能够在样本机器人学习任务中解释和利用触觉信号,从而改善机器人需要更多培训的区域的识别,并使用户能够提供更好的演示。查看我们的设备和用户学习的视频:https://youtu.be/tx-2tqeb9nw
translated by 谷歌翻译
在这项研究中,我们研究了中枢神经系统(CNS)如何在个人在虚拟现实(VR)环境中执行复杂的捕捉任务时如何组织姿势控制协同作用。机器人直立的立式培训师(健壮)平台,包括表面肌电图和运动学,用于研究中枢神经系统微型姿势协同作用,具有扰动和辅助的力场。招募了一个没有辅助力的对照组,以阐明力场在扰动后以及VR达到任务期间对运动性能和姿势协同组织的影响。我们发现,辅助力量的应用显着改善了达到和平衡控制。接收辅助力的小组显示出四个姿势控制协同作用,其特征是较高的复杂性(即涉及更多肌肉)。但是,控制受试者显示了八种协同作用,这些协同作用减少了肌肉的数量。总之,辅助力减少了姿势协同的数量,同时增加了肌肉模块组成的复杂性。
translated by 谷歌翻译