Just like in humans vision plays a fundamental role in guiding adaptive locomotion, when designing the control strategy for a walking assistive technology, Computer Vision may bring substantial improvements when performing an environment-based assistance modulation. In this work, we developed a hip exosuit controller able to distinguish among three different walking terrains through the use of an RGB camera and to adapt the assistance accordingly. The system was tested with seven healthy participants walking throughout an overground path comprising of staircases and level ground. Subjects performed the task with the exosuit disabled (Exo Off), constant assistance profile (Vision Off ), and with assistance modulation (Vision On). Our results showed that the controller was able to promptly classify in real-time the path in front of the user with an overall accuracy per class above the 85%, and to perform assistance modulation accordingly. Evaluation related to the effects on the user showed that Vision On was able to outperform the other two conditions: we obtained significantly higher metabolic savings than Exo Off, with a peak of about -20% when climbing up the staircase and about -16% in the overall path, and than Vision Off when ascending or descending stairs. Such advancements in the field may yield to a step forward for the exploitation of lightweight walking assistive technologies in real-life scenarios.
translated by 谷歌翻译
为了在医疗和工业环境中广泛采用可穿戴机器人外骨骼,至关重要的是,它们可以适应性地支持大量运动。我们提出了一种新的人机界面,以同时在一系列“看不见的”步行条件和未用于建立控制界面的“看不见”步行条件和过渡期间同时驱动双侧踝部外骨骼。提出的方法使用人特异性的神经力学模型从测量的肌电图(EMG)和关节角度实时估算生物踝关节扭矩。基于干扰观察者的低级控制器将生物扭矩估计转换为外骨骼命令。我们称此“基于神经力学模型的控制”(NMBC)。 NMBC使六个人能够自愿控制六个步行条件下的双边踝部外骨骼,包括所有中间过渡,即两个步行速度,每个步行速度在三个地面高程中进行,不需要预先定义的扭矩轮廓,也不需要先验选择的神经肌肉肌肉反射规则,或国家机器在文献中很常见。在涉及月球漫步的灵活的运动任务上进行了一个单一的主题案例研究。 NMBC始终启用能够减少生物踝扭矩,以及与非辅助条件相比,在步行条件(24%扭矩; 14%EMG)之间以及步行条件(24%扭矩; 14%EMG)之间的八个踝部肌肉EMG。新型步行条件下的扭矩和EMG减少表明,外骨骼在操作员的神经肌肉系统控制的外观上进行了共生。这为系统地采用可穿戴机器人作为现场医疗和职业环境的一部分开辟了新的途径。
translated by 谷歌翻译
外骨骼和矫形器是可穿戴移动系统,为用户提供机械益处。尽管在过去几十年中有重大改进,但该技术不会完全成熟,以便采用剧烈和非编程任务。为了适应这种功能不全,需要分析和改进该技术的不同方面。许多研究一直在努力解决外骨骼的某些方面,例如,机构设计,意向预测和控制方案。但是,大多数作品都专注于设计或应用的特定元素,而无需提供全面的审查框架。本研究旨在分析和调查为改进和广泛采用这项技术的贡献方面。为了解决此问题,在引入辅助设备和外骨骼后,将从物理人员 - 机器人接口(HRI)的角度来研究主要的设计标准。通过概述不同类别的已知辅助设备的几个例子,将进一步开发该研究。为了建立智能HRI策略并为用户提供直观的控制,将研究认知HRI。将审查这种策略的各种方法,并提出了意图预测的模型。该模型用于从单个电拍摄(EMG)通道输入的栅极相位。建模结果显示出低功耗辅助设备中单通道输入的潜在使用。此外,所提出的模型可以在具有复杂控制策略的设备中提供冗余。
translated by 谷歌翻译
在各种条件下行走期间关节阻抗的知识与临床决策以及机器人步态培训师,腿部假体,腿矫形器和可穿戴外骨骼的发展相关。虽然步行过程中的脚踝阻抗已经通过实验评估,但尚未识别步行期间的膝盖和髋关节阻抗。在这里,我们开发并评估了下肢扰动器,以识别跑步机行走期间髋关节,膝关节和踝关节阻抗。下肢扰动器(Loper)由致动器组成,致动器通过杆连接到大腿。 Loper允许将力扰动施加到自由悬挂的腿上,同时站立在对侧腿上,带宽高达39Hz。在以最小的阻抗模式下行走时,Loper和大腿之间的相互作用力低(<5N),并且对行走图案的效果小于正常行走期间的对象内变异性。使用摆动腿动力学的非线性多体动力学模型,在摆动阶段在速度为0.5米/秒的速度的九个受试者期间估计臀部,膝关节和踝关节阻抗。所识别的模型能够预测实验反应,因为分别占髋部,膝关节和踝部的平均方差为99%,96%和77%。对受试者刚度的平均分别在34-66nm / rad,0-3.5nm / rad,0-3.5nm / rad和2.5-24nm / rad的三个时间点之间变化,分别用于臀部,膝部和踝关节。阻尼分别在1.9-4.6 nms / rad,0.02-0.14 nms / rad和0.2-2.4 nms / rad的0.02-0.14 nms / rad供应到0.2-2.4nms / rad。发达的洛普勒对不受干扰的行走模式具有可忽略的影响,并且允许在摆动阶段识别臀部,膝关节和踝关节阻抗。
translated by 谷歌翻译
为了改善对步态辅助的可穿戴机器人技术的控制,我们提出了一种基于包括时间历史信息的人工神经网络的连续运动模式识别以及步态阶段和楼梯坡度估算的方法。输入功能仅由处理变量组成,这些变量可以通过单个柄安装的惯性测量单元进行测量。我们引入了可穿戴设备,以获取现实世界环境测试数据,以证明该方法的性能和鲁棒性。确定平均绝对误差(步态相,楼梯斜率)和准确性(运动模式),以进行稳定的步行和稳定的楼梯移动。使用来自不同传感器硬件,传感器固定,移动环境和受试者的测试数据评估鲁棒性。步态阶段稳定步态测试数据的平均绝对误差为2.0-3.5%,对于楼梯斜率估计,步态阶段的平均绝对误差为3.3-3.8 {\ deg}。在测试数据上使用时间历史记录信息的利用在98.51%和99.67%之间的测试数据上正确的运动模式的准确性。结果表明,在稳定步态期间,持续预测步态阶段,楼梯斜率和运动模式的高性能和鲁棒性。如假设的那样,时间历史信息改善了运动模式识别。但是,尽管步射阶段在运动模式之间未经训练的过渡方面表现良好,但我们的定性分析表明,将过渡数据纳入神经网络的训练以改善斜率和运动模式的预测可能是有益的。我们的结果表明,人工神经网络可用于对可穿戴下肢机器人技术的高水平控制。
translated by 谷歌翻译
促进辅助(AAN)控制旨在通过鼓励患者积极参与促进机器人辅助康复的治疗结果。大多数AAN控制器使用阻抗控制来在目标运动周围创建柔性的力字段,以确保在允许中等运动错误的同时进行跟踪精度。然而,由于控制力场的形状的参数通常根据关于关于对象学习能力的简单假设在线手动调整或在线调整,因此可以限制传统AAN控制器的有效性。在这项工作中,我们提出了一种新颖的自适应AAN控制器,其能够根据每个单独的电动机能力和任务要求自动重塑力场以相位相关的方式重塑力场。该拟议的控制器包括使用路径积分算法的修改策略改进,一种无模型的采样的增强学习方法,该方法实时地学习了特定于主题的阻抗景观,以及嵌入AAN PARADIGM的分层策略参数评估结构通过指定性能驱动的学习目标。通过跑步机培训课程通过具有能够在动力踝足矫形器的协助学习改变的步态模式的跑步机培训课程,通过跑步机培训课程进行实验验证,拟议的控制策略及其促进短期运动适应能力的适应性。
translated by 谷歌翻译
人类的腿部运动受人体和神经控制的自然动态的控制。假定有助于人类行走效率高的一种机制是冲动的脚踝推断,它可能为挥杆腿弹射器提供动力。然而,尚不清楚人类下腿的机制,其复杂的肌肉弯曲单元跨越了单个关节和多个关节。腿部机器人允许在实际步行步态中测试复杂的腿力学,控制和环境之间的相互作用。我们开发了一个高0.49m,2.2千克的拟人化型双足机器人,带有比目鱼和甲壳虫肌肉弯曲单元,由线性弹簧代表,在机器人的踝关节和膝关节周围充当单型和二子弹性结构。我们测试了三个比目鱼和胃弹簧螺旋形构型对踝关节功率曲线的影响,踝关节和膝关节运动的协调,总运输成本和步行速度。我们用前馈中央模式发生器控制了机器人,在1.0Hz运动频率下,步行速度在0.35m/s和0.57m/s之间,腿长为0.35m。我们发现所有三种配置之间的差异。比目鱼弹簧刺刺调节机器人的速度和能量效率可能是通过踝关节放大的,而胃刺的弹簧螺旋体在推下时改变了脚踝和膝关节之间的运动配位。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
平衡和步态障碍是跌倒的第二主要原因,随之而来的是伤害,据报道是世界各地的主要公共卫生问题。对于不需要机械支持的患者,纤维触及反馈界面已被证明是恢复平衡的成功方法。大多数现有策略评估躯干或头部倾斜,速度或足底力,仅限于立场的分析。另一方面,平衡控制的中心是需要将身体的压力中心(COP)保持在支撑多边形(SP)的可行限制,如站立或前进到新的SP(如步行中)。因此,本文提出了一项探索性研究,以研究是否可以在步行过程中使用速函反馈来领导人类警察。引入了Ergotac-belt纤维触觉设备,以指示用户在前后轴和中侧轴上的方向。这里采用了一种预期策略,以使用户有足够的时间对刺激做出反应。对十个健康受试者进行的实验证明了该设备沿预定义的参考路径指导用户的COP具有有希望的能力,其性能与视觉反馈相似。未来的发展将调查我们的战略和设备,以指导老年人或前庭障碍的人的警察,他们可能不知道或能够弄清楚安全且人体工程学的COP道路。
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
外部磁场可用于远程控制小尺寸的机器人,使其具有多样化的生物医学和工程应用的候选人。我们表明,我们的磁动毫罗罗布特是高度敏捷的,并且可以执行各种机车任务,例如枢轴行走和在水平面翻滚。在这里,我们专注于控制枢轴行走模式中该毫无米罗罗布特的运动效果。开发了系统的数学模型,派生了运动模型。还研究了机器人运动中扫描和倾斜角度的作用。我们提出了两个控制器来调节枢轴步行者的步态。第一个是比例几何控制器,它决定了Millobot应该使用的正确枢轴点。然后,它基于毫无槌和参考轨迹的中心之间的误差按比例地调节角速度。第二控制器基于梯度下降优化技术,其表示控制动作作为优化问题。这些控制算法使得MilliRobot能够在跟踪所需的轨迹时产生稳定的步态。我们进行一组不同的实验和模拟运行,以确定所提出的控制器在跟踪误差方面的不同扫描和倾斜角度的有效性。这两个控制器表现出适当的性能,但观察到基于梯度下降基于的控制器产生更快的收敛时间,更小的跟踪误差和更少的步数。最后,我们对扫描角度,倾斜角度和步进时间对跟踪误差的影响进行了广泛的实验参数分析。正如我们所预期的那样,基于优化的控制器优于基于几何的控制器。
translated by 谷歌翻译
人体步态是指不仅代表活动能力的每日运动,而且还可以用人类观察者或计算机来识别步行者。最近的研究表明,步态甚至传达了有关沃克情绪的信息。不同情绪状态中的个体可能显示出不同的步态模式。各种情绪和步态模式之间的映射为自动情绪识别提供了新的来源。与传统的情绪检测生物识别技术(例如面部表达,言语和生理参数)相比,步态是可以观察到的,更难以模仿,并且需要从该主题中进行较少的合作。这些优势使步态成为情感检测的有前途的来源。本文回顾了有关基于步态的情绪检测的当前研究,尤其是关于步态参数如何受到不同情绪状态的影响以及如何通过不同的步态模式识别情绪状态的研究。我们专注于情感识别过程中应用的详细方法和技术:数据收集,预处理和分类。最后,我们讨论了使用智能计算和大数据的最先进技术的状态来讨论高效有效的基于步态的情感识别的可能发展。
translated by 谷歌翻译
我们专注于开发Quadrupedal机器人节能控制器的问题。动物可以以不同的速度积极切换Gaits以降低其能量消耗。在本文中,我们设计了一个分层学习框架,其中独特的运动遗传仪和自然步态过渡自动出现,其能量最小化的简单奖励。我们使用进化策略来培训一个高级步态政策,指定每只脚的步态图案,而低级凸MPC控制器优化电机命令,以便机器人可以使用该步态图案以所需的速度行走。我们在四足机器人上测试我们的学习框架,并展示了自动步态过渡,从步行到小跑和飞行,因为机器人增加了速度。我们表明学习的等级控制器在广泛的运动速度范围内消耗的能量要少于基线控制器。
translated by 谷歌翻译
我们通过在轮子上的光加权外骨骼提出了一个用于低体积受损的用户的个人移动装置。在其核心上,一种新型的被动外骨骼提供姿势过渡,利用自然身体姿势,该姿势在静坐的静止和静坐(STS)过渡时,通过单个气体弹簧作为储能单元,通过支撑架上的躯干。我们通过双轮线系统提出膝盖和髋关节的方向依赖性耦合,从躯干运动转移到膝关节致动器处的力矩负载来平衡躯干运动。在这里,外骨骼最大化能量转移和用户运动的自然。我们介绍了一个体现的用户界面,用于通过躯干压力感测通过躯干压力感测,导致平均$ 19 ^ {\ rIC} \ PM 13 ^ {\ rIC} $上六个未受害的用户。我们评估了11月11日未受害的用户在过渡期间观察动作和肌肉活动的STS帮助的设计。结果比较辅助和无归档的STS转型验证了涉及的肌肉群体的显着减少(高达68美元\%$ 5,01.01 $)。此外,我们通过自然躯干倾斜运动来显示它是可行的$ + 12 ^ {\ riC} \ pm 6.5 ^ {\ circ} $和$ - 13.7 ^ {\ rIC} \ pm 6.1 ^ {\ riC} $ staity和分别坐着。被动灾害迁移援助保证进一步努力提高其适用性和扩大用户人口。
translated by 谷歌翻译
我们提出了一种基于直接质心控制的人形机器人的运动和平衡的综合方法。我们的方法使用人形生物的五质量描述。它从机器人的所需脚部轨迹和质心参数产生全身运动。一组简化的模型用于制定一般和直观的控制定律,然后实时应用它们,以估算和调节质量位置的中心和多体惯性主轴的方向。所提出的算法的组合产生了一条伸展的步态,并具有自然的上身运动。由于仅需要6轴IMU和关节编码器才能实现,因此机器人之间的可移植性很高。我们的方法已通过类人类开放式平台对实验进行了实验验证,证明了全身运动和推动排斥能力。
translated by 谷歌翻译
与工作有关的肌肉骨骼障碍(WMSDS)仍然是欧盟的主要职业安全和健康问题。因此,持续追踪工人对可能导致其发展有贡献的因素的暴露是至关重要的。本文介绍了一种在线方法来监控工人上的运动和动态数量,提供当天在日常工作中所需的物理负荷的估计。定义了一套符合人体工程学的指标,以考虑对WMSD的多个潜在贡献者,也重视工人的主题特定要求。为了评估拟议的框架,考虑到在制造业中代表典型工作活动的任务,对十二人受试者进行了彻底的实验分析。对于每个任务,在统计分析之后,识别更好地解释底层物理负荷的符合人体工程学指标,并通过表面肌电图(SEMG)分析的结果支持。还通过公认的和标准工具进行了比较,以评估工作场所的人体工程学,突出所提出的框架引入的益处。结果证明了拟议框架在识别物理危险因素方面的高潜力,从而采取预防措施。该研究的另一个同样重要的贡献是在人类血管动力学测量中创建一个综合数据库,该测量涉及执行典型工业任务的健康受试者的多个感官数据。
translated by 谷歌翻译
由于其鲁棒性和可扩展性,在使用增强学习的速度学习时,可以越来越兴趣地学习四足机器人的速度指令跟踪控制器。但是,无论命令速度如何,单个策略训练训练,通常都显示了单个步态。考虑到根据四足动物的速度,考虑到最佳步态存在的次优的解决方案。在这项工作中,我们提出了一个分层控制器,用于四足机器人,可以在跟踪速度命令的同时生成多个Gaits(即步态,小跑,绑定)。我们的控制器由两项策略组成,每个政策都作为中央图案发生器和本地反馈控制器组成,并培训了具有层次强化学习。实验结果表明1)特定速度范围的最佳步态的存在2)与由单个策略组成的控制器相比,我们的分层控制器的效率通常显示单个步态。代码公开可用。
translated by 谷歌翻译
反复出现或持续的尴尬身体姿势是与工作相关的肌肉骨骼疾病(MSD)发展最常见的危险因素之一。为了防止工人采用有害配置,也可以指导他们朝着更符合人体工程学的配置,可穿戴触觉设备可能是理想的解决方案。在本文中,在肢体姿势校正环境中评估了一个称为Ergotac的纤维ac式单元,称为袖口和称为袖口的滑动单元。使用定量与任务相关的指标和主观定量评估,比较了在十二个健康受试者中比较了他们提供单关节(肩膀或膝盖)和多关节(肩膀和膝盖)指导的能力。还建立了一个集成的环境,以简化参与传感器和反馈系统之间的沟通和数据共享。结果显示出两种设备的良好可接受性和直觉。 Ergotac似乎是肩膀的合适反馈装置,而袖口可能是膝盖的有效解决方案。这项比较研究虽然是初步的,但却是对两种设备进行有效全身姿势校正的潜在整合的促进,目的是开发反馈和辅助设备,以提高工人对危险工作条件的认识,从而防止MSD。
translated by 谷歌翻译