如今,越来越多的人被诊断出患有心血管疾病(CVD),这是全球死亡的主要原因。鉴定这些心脏问题的金标准是通过心电图(ECG)。标准的12铅ECG广泛用于临床实践和当前的大多数研究。但是,使用较少的铅可以使ECG更加普遍,因为它可以与便携式或可穿戴设备集成。本文介绍了两种新型技术,以提高当前深度学习系统的3铅ECG分类的性能,从而与使用标准12铅ECG训练的模型相提并论。具体而言,我们提出了一种以心跳回归数量的形式的多任务学习方案,以及将患者人口统计数据整合到系统中的有效机制。随着这两个进步,我们在两个大规模的ECG数据集(即Chapman和CPSC-2018)上以F1分数为0.9796和0.8140的分类性能,这些数据分别超过了当前最新的ECG分类方法,该方法超过了当前的ECG分类方法。甚至那些接受了12条铅数据的培训。为了鼓励进一步开发,我们的源代码可在https://github.com/lhkhiem28/lightx3ecg上公开获得。
translated by 谷歌翻译
心血管疾病(CVD)是一组心脏和血管疾病,是对人类健康最严重的危险之一,此类患者的数量仍在增长。早期,准确的检测在成功治疗和干预中起着关键作用。心电图(ECG)是识别各种心血管异常的金标准。在临床实践和当前大多数研究中,主要使用标准的12铅ECG。但是,使用较少的铅可以使ECG更加普遍,因为可以通过便携式或可穿戴设备来方便地记录它。在这项研究中,我们开发了一种新颖的深度学习系统,以仅使用三个ECG铅来准确识别多个心血管异常。
translated by 谷歌翻译
背景:12个引线ECG是心血管疾病的核心诊断工具。在这里,我们描述并分析了一个集成的深度神经网络架构,从12个引导eCG分类了24个心脏异常。方法:我们提出了挤压和激发reset,以自动学习来自12个引主ECG的深度特征,以识别24个心脏病。在最终完全连接的层中,随着年龄和性别特征增强了深度特征。使用约束网格搜索设置每个类的输出阈值。为了确定为什么该模型的预测不正确,两个专家诊所人员独立地解释了一组关于左轴偏差的一次无序的ECG。结果:采用定制加权精度度量,我们达到了0.684的5倍交叉验证得分,灵敏度和特异性分别为0.758和0.969。我们在完整的测试数据中得分0.520,并在官方挑战排名中排名第21中。在一系列被错误分类的心电图中,两个临床医生和训练标签之间的协议差(临床医生1:Kappa = -0.057,临床医生2:Kappa = -0.159)。相比之下,临床医生之间的协议非常高(Kappa = 0.92)。讨论:与在相同数据上培训的模型相比,所提出的预测模型很好地对验证和隐藏的测试数据进行了良好。我们还发现培训标签的相当不一致,这可能会阻碍更准确的模型的开发。
translated by 谷歌翻译
睡眠呼吸暂停(SA)是一种睡眠障碍,其特征是打s和慢性睡眠,这可能导致严重的疾病,例如高血压,心力衰竭和心肌病(心脏肌肉组织的增大)。心电图(ECG)在识别SA中起着至关重要的作用,因为它可能显示出异常的心脏活性。对基于ECG的SA检测的最新研究集中在功能工程技术上,这些技术从多铅ECG信号中提取特定特征,并将其用作分类模型输入。在这项研究中,提出了一种基于S峰检测的新型特征提取方法,以增强使用单铅ECG对相邻SA段的检测。特别是,使用单个铅(V2)收集的ECG特征用于识别SA发作。在提取的功能上,对CNN模型进行了训练以检测SA。实验结果表明,所提出的方法从单铅ECG数据中检测到SA比现有的最新方法更准确,具有91.13%的分类精度,敏感性为92.58%和88.75%的特异性。此外,与S峰相关的特征的进一步使用可以提高分类准确性0.85%。我们的发现表明,提出的机器学习系统有可能成为检测SA发作的有效方法。
translated by 谷歌翻译
COVID-19大流行已经暴露了全球医疗服务的脆弱性,增加了开发新颖的工具来提供快速且具有成本效益的筛查和诊断的需求。临床报告表明,Covid-19感染可能导致心脏损伤,心电图(ECG)可以作为Covid-19的诊断生物标志物。这项研究旨在利用ECG信号自动检测COVID-19。我们提出了一种从ECG纸记录中提取ECG信号的新方法,然后将其送入一维卷积神经网络(1D-CNN)中,以学习和诊断疾病。为了评估数字信号的质量,标记了基于纸张的ECG图像中的R峰。之后,将从每个图像计算的RR间隔与相应数字化信号的RR间隔进行比较。 COVID-19 ECG图像数据集上的实验表明,提出的数字化方法能够正确捕获原始信号,平均绝对误差为28.11 ms。我们提出的1D-CNN模型在数字化的心电图信号上进行了训练,允许准确识别患有COVID-19和其他受试者的个体,分类精度为98.42%,95.63%和98.50%,用于分类COVID-19 vs.正常,与正常人分类, COVID-19与异常心跳和Covid-19和其他类别分别与其他阶级。此外,提出的方法还为多分类任务实现了高级的性能。我们的发现表明,经过数字化的心电图信号训练的深度学习系统可以作为诊断Covid-19的潜在工具。
translated by 谷歌翻译
Cardiac resynchronization therapy (CRT) is a treatment that is used to compensate for irregularities in the heartbeat. Studies have shown that this treatment is more effective in heart patients with left bundle branch block (LBBB) arrhythmia. Therefore, identifying this arrhythmia is an important initial step in determining whether or not to use CRT. On the other hand, traditional methods for detecting LBBB on electrocardiograms (ECG) are often associated with errors. Thus, there is a need for an accurate method to diagnose this arrhythmia from ECG data. Machine learning, as a new field of study, has helped to increase human systems' performance. Deep learning, as a newer subfield of machine learning, has more power to analyze data and increase systems accuracy. This study presents a deep learning model for the detection of LBBB arrhythmia from 12-lead ECG data. This model consists of 1D dilated convolutional layers. Attention mechanism has also been used to identify important input data features and classify inputs more accurately. The proposed model is trained and validated on a database containing 10344 12-lead ECG samples using the 10-fold cross-validation method. The final results obtained by the model on the 12-lead ECG data are as follows. Accuracy: 98.80+-0.08%, specificity: 99.33+-0.11 %, F1 score: 73.97+-1.8%, and area under the receiver operating characteristics curve (AUC): 0.875+-0.0192. These results indicate that the proposed model in this study can effectively diagnose LBBB with good efficiency and, if used in medical centers, will greatly help diagnose this arrhythmia and early treatment.
translated by 谷歌翻译
心电图(ECG)是用于监测心脏电信号和评估其功能的最常见和常规诊断工具。人心脏可能患有多种疾病,包括心律不齐。心律不齐是一种不规则的心律,在严重的情况下会导致心脏中风,可以通过ECG记录诊断。由于早期发现心律不齐非常重要,因此在过去的几十年中,计算机化和自动化的分类以及这些异常心脏信号的识别引起了很多关注。方法:本文引入了一种轻度的深度学习方法,以高精度检测8种不同的心律不齐和正常节奏。为了利用深度学习方法,将重新采样和基线徘徊清除技术应用于ECG信号。在这项研究中,将500个样本ECG段用作模型输入。节奏分类是通过11层网络以端到端方式完成的,而无需手工制作的手动功能提取。结果:为了评估提出的技术,从两个Physionet数据库,MIT-BIH心律失常数据库和长期AF数据库中选择了ECG信号。基于卷积神经网络(CNN)和长期记忆(LSTM)的组合,提出的深度学习框架比大多数最先进的方法显示出令人鼓舞的结果。所提出的方法达到98.24%的平均诊断准确性。结论:成功开发和测试了使用多种心电图信号的心律失常分类的训练有素的模型。意义:由于本工作使用具有高诊断精度的光分类技术与其他值得注意的方法相比,因此可以在Holter Monitor设备中成功实施以进行心律失常检测。
translated by 谷歌翻译
随着深度学习(DL)的引入,常用心电图(ECG)诊断模型的性能改善。但是,尚未充分研究多个DL组件的各种组合和/或数据增强技术对诊断的作用的影响。这项研究提出了一种基于集合的多视图学习方法,采用ECG增强技术,比传统的12级ECG诊断方法获得更高的性能。数据分析结果表明,所提出的模型报告的F1得分为0.840,这表现优于文献中现有的最新方法。
translated by 谷歌翻译
目的:机器学习技术已广泛用于12铅心电图(ECG)分析。对于生理时间序列,基于领域知识的深度学习(DL)优势(FE)方法仍然是一个悬而未决的问题。此外,尚不清楚将DL与FE结合起来是否可以提高性能。方法:我们考虑了要解决这些研究差距的三个任务:心律不齐的诊断(多类 - 甲状腺素分类),房颤风险预测(二进制分类)和年龄估计(回归)。我们使用2.3m 12铅ECG录音的总体数据集来培训每个任务的以下模型:i)随机森林将FE作为输入作为经典的机器学习方法培训; ii)端到端DL模型; iii)Fe+DL的合并模型。结果:FE得出的结果与DL产生了可比的结果,同时需要较少的两个分类任务数据,并且对于回归任务而言,DL的表现优于DL。对于所有任务,将FE与DL合并并不能单独提高DL的性能。结论:我们发现,对于传统的12铅ECG诊断任务,DL并未对FE产生有意义的改进,而它显着改善了非传统回归任务。我们还发现,将FE与DL相结合并不能单独改善DL,这表明FE与DL学到的功能是多余的。意义:我们的发现提供了有关哪种机器学习策略和数据制度的重要建议,可以选择基于12 Lead ECG开发新机器学习模型的任务。
translated by 谷歌翻译
背景:基于AI的足够大型,精心策划的医疗数据集的分析已被证明有望提供早期检测,更快的诊断,更好的决策和更有效的治疗方法。但是,从多种来源获得的如此高度机密且非常敏感的医疗数据通常受到高度限制,因为不当使用,不安全的存储,数据泄漏或滥用可能侵犯了一个人的隐私。在这项工作中,我们将联合学习范式应用于异质的,孤立的高清心电图集,该图从12铅的ECG传感器阵列到达来训练AI模型。与在中心位置收集相同的数据时,我们评估了所得模型的能力,与经过训练的最新模型相比,获得了等效性能。方法:我们提出了一种基于联合学习范式训练AI模型的隐私方法,以培训AI模型,以实现异质,分布式,数据集。该方法应用于基于梯度增强,卷积神经网络和具有长期短期记忆的复发神经网络的广泛机器学习技术。这些模型在一个心电图数据集上进行了培训,该数据集包含从六名地理分开和异质来源的43,059名患者收集的12个铅录音。研究结果:用于检测心血管异常的AI模型的结果集获得了与使用集中学习方法训练的模型相当的预测性能。解释:计算参数的方法在本地为全局模型做出了贡献,然后仅交换此类参数,而不是ML中的整个敏感数据,这有助于保留医疗数据隐私。
translated by 谷歌翻译
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
translated by 谷歌翻译
呼吸率(RR)是重要的生物标志物,因为RR变化可以反映严重的医学事件,例如心脏病,肺部疾病和睡眠障碍。但是,不幸的是,标准手动RR计数容易出现人为错误,不能连续执行。这项研究提出了一种连续估计RR,RRWAVENET的方法。该方法是一种紧凑的端到端深度学习模型,不需要特征工程,可以将低成本的原始光摄影学(PPG)用作输入信号。对RRWAVENET进行了独立于主题的测试,并与三个数据集(BIDMC,Capnobase和Wesad)中的基线进行了比较,并使用三个窗口尺寸(16、32和64秒)进行了比较。 RRWAVENET优于最佳窗口大小为1.66 \ pm 1.01、1.59 \ pm 1.08的最佳绝对错误的最新方法,每个数据集每分钟每分钟呼吸0.96。在远程监视设置(例如在WESAD数据集中),我们将传输学习应用于其他两个ICU数据集,将MAE降低到1.52 \ pm每分钟0.50呼吸,显示此模型可以准确且实用的RR对负担得起的可穿戴设备进行准确估算。我们的研究表明,在远程医疗和家里,远程RR监测的可行性。
translated by 谷歌翻译
我们提出了跨模式的细心连接,这是一种从可穿戴数据中学习的新型动态和有效技术。我们的解决方案可以集成到管道的任何阶段,即在任何卷积层或块之后,以在负责处理每种模式的单个流之间创建中间连接。此外,我们的方法受益于两个属性。首先,它可以单向共享信息(从一种方式到另一种方式)或双向分别。其次,可以同时将其集成到多个阶段中,以进一步允许以几个接触点交换网络梯度。我们对三个公共多模式可穿戴数据集(Wesad,Swell-KW和案例)进行了广泛的实验,并证明我们的方法可以有效地调节不同模式之间的信息,以学习更好的表示。我们的实验进一步表明,一旦整合到基于CNN的多模式溶液(2、3或4模态)中,我们的方法就会导致卓越或竞争性的性能,而不是最先进的表现,并且表现优于各种基线模式和经典的多模式方法。
translated by 谷歌翻译
为了推动满足所有人需求并使医疗保健民主化的健康创新,有必要评估各种分配转变的深度学习(DL)算法的概括性能,以确保这些算法具有强大的态度。据我们所知,这项回顾性研究是第一个开发和评估从跨种族,年龄和性别的长期跳动间隔的AF事件检测的深度学习模型(DL)模型的概括性能(DL)模型的概括。新的复发DL模型(表示为ARNET2)是在2,147名患者的大型回顾性数据集中开发的,总计51,386小时连续心电图(ECG)。对来自四个中心(美国,以色列,日本和中国)的手动注释测试集评估了模型的概括,总计402名患者。该模型在以色列海法的Rambam医院Holter Clinic的1,730个Consecutives Holter记录中进一步验证了该模型。该模型的表现优于最先进的模型,并且在种族,年龄和性别之间进行了广泛的良好。女性的表现高于男性和年轻人(不到60岁),并且在种族之间显示出一些差异。解释这些变化的主要发现是心房颤动患病率更高(AFL)的群体的性能受损。我们关于跨组的ARNET2相对性能的发现可能对选择相对于感兴趣群的首选AF检查方法具有临床意义。
translated by 谷歌翻译
心血管疾病是世界各地最常见的死亡原因。为了检测和治疗心脏相关的疾病,需要连续血压(BP)监测以及许多其他参数。为此目的开发了几种侵入性和非侵入性方法。用于持续监测BP的医院中使用的大多数现有方法是侵入性的。相反,基于袖带的BP监测方法,可以预测收缩压(SBP)和舒张压(DBP),不能用于连续监测。几项研究试图从非侵​​入性可收集信号(例如光学肌谱(PPG)和心电图(ECG))预测BP,其可用于连续监测。在这项研究中,我们探讨了自动化器在PPG和ECG信号中预测BP的适用性。在12,000岁的MIMIC-II数据集中进行了调查,发现了一个非常浅的一维AutoEncoder可以提取相关功能,以预测与最先进的SBP和DBP在非常大的数据集上的性能。从模拟-II数据集的一部分的独立测试分别为SBP和DBP提供了2.333和0.713的MAE。在40个主题的外部数据集上,模型在MIMIC-II数据集上培训,分别为SBP和DBP提供2.728和1.166的MAE。对于这种情况来说,结果达到了英国高血压协会(BHS)A级并超越了目前文学的研究。
translated by 谷歌翻译
自动睡眠评分对于诊断和治疗睡眠障碍至关重要,并在家庭环境中实现纵向睡眠跟踪。通常,对单渠道脑电图(EEG)进行基于学习的自动睡眠评分是积极研究的,因为困难在睡眠过程中获得多通道信号。但是,由于以下问题,来自原始脑电图信号的学习表示形式挑战:1)与睡眠相关的脑电图模式发生在不同的时间和频率尺度上,2)睡眠阶段共享相似的脑电图模式。为了解决这些问题,我们提出了一个名为Sleepyco的深度学习框架,该框架结合了1)功能金字塔和2)自动睡眠评分的监督对比度学习。对于特征金字塔,我们提出了一个名为sleepyco-backbone的骨干网络,以考虑在不同的时间和频率尺度上的多个特征序列。监督的对比学习允许网络通过最大程度地降低类内部特征之间的距离并同时最大程度地提高阶层间特征之间的距离来提取类别特征。对四个公共数据集的比较分析表明,Sleepyco始终优于基于单渠道EEG的现有框架。广泛的消融实验表明,Sleepyco表现出增强的总体表现,N1和快速眼运动(REM)阶段之间的歧视有了显着改善。
translated by 谷歌翻译
心律不齐的右心肌病(ARVC)是一种遗传性心肌疾病,在患者生命的第二和十年之间出现,导致35岁之前的心脏突然死亡的20%。在心电图(ECG)上,在降低过早心血管死亡率中可能具有至关重要的作用。在我们的分析中,我们首先概述了基于纸张的ECG信号的数字化过程,该空间过滤器旨在消除数据集图像中与ECG波形无关的黑暗区域,从而产生不良的噪声。接下来,我们建议使用低 - 复杂性卷积神经网络来检测心律失常心脏病,迄今为止尚未通过使用深度学习方法来研究,迄今为止的使用,达到高分类准确性,即99.98%的训练和98.6%测试准确性,与其他心律失常异常相反,在疾病上,其主要鉴定标准是ECG形态的无限千伏变化。最后,通过进行光谱分析,我们研究了与ARVC患者相对应的正常ECG和ECG之间频率领域的显着区别。在我们遇到统计学上显着分化的18个频率中,有16个中,正常的心电图的特征是与异常相比更大的归一化振幅。本文进行的总体研究强调了将数学方法整合到各种疾病的检查和有效诊断中的重要性,旨在为他们的成功治疗做出重大贡献。
translated by 谷歌翻译
睡眠是一种基本的生理过程,对于维持健康的身心至关重要。临床睡眠监测的黄金标准是多核桃摄影(PSG),基于哪个睡眠可以分为五个阶段,包括尾脉冲睡眠(REM睡眠)/非REM睡眠1(N1)/非REM睡眠2 (n2)/非REM睡眠3(n3)。然而,PSG昂贵,繁重,不适合日常使用。对于长期睡眠监测,无处不在的感测可以是解决方案。最近,心脏和运动感测在分类三阶段睡眠方面变得流行,因为两种方式都可以从研究级或消费者级设备中获得(例如,Apple Watch)。但是,为最大准确性融合数据的最佳仍然是一个打开的问题。在这项工作中,我们综合地研究了深度学习(DL)的高级融合技术,包括三种融合策略,三个融合方法以及三级睡眠分类,基于两个公共数据集。实验结果表明,通过融合心脏/运动传感方式可以可靠地分类三阶段睡眠,这可能成为在睡眠中进行大规模睡眠阶段评估研究或长期自动跟踪的实用工具。为了加快普遍存在/可穿戴计算社区的睡眠研究的进展,我们制作了该项目开源,可以在:https://github.com/bzhai/ubi-sleepnet找到代码。
translated by 谷歌翻译
目前借助脑电图(EEG)信号目前进行自动睡眠分期研究。最近,基于深度学习(DL)的方法在该领域实现了重大进展,允许在自动睡眠分段中近的人类准确性。然而,基于EEG的睡眠分段需要广泛的以及昂贵的临床设置。此外,在研究下,对课程的专家和增加不便的要求呈现在护理点中不利。心电图(ECG)是脑电图的不引人注目的替代品,更适合,但其性能不成本,与基于EEG的睡眠分段相比,亚比例仍然存在。当然,将知识从EEG转移到ECG,最终提高了基于ECG的投入的模型的性能有助于。知识蒸馏(KD)是DL中的着名概念,用于看起来将知识从更好但潜在的繁琐的教师模型转移到紧凑的学生模型。在这一概念上,我们提出了一个跨模型KD框架,以便通过通过在eeg上培训的型号学习的功能的帮助来提高基于ECG的睡眠分期性能。此外,我们还对所提出的模型的各个组成部分进行多次实验,以便更好地了解蒸馏方法。梦想研究(质量)蒙特利尔档案的200个科目的数据用于我们的研究。所提出的模型分别在4级和3级睡眠分段中分别增加了14.3×%和13.4 \%。这证明了KD在4级(W-L-D-R)和3级(W-N-R)分类中的单通道ECG基于睡眠分段的性能改进的可行性。
translated by 谷歌翻译
Survival modeling in healthcare relies on explainable statistical models; yet, their underlying assumptions are often simplistic and, thus, unrealistic. Machine learning models can estimate more complex relationships and lead to more accurate predictions, but are non-interpretable. This study shows it is possible to estimate hospitalization for congestive heart failure by a 30 seconds single-lead electrocardiogram signal. Using a machine learning approach not only results in greater predictive power but also provides clinically meaningful interpretations. We train an eXtreme Gradient Boosting accelerated failure time model and exploit SHapley Additive exPlanations values to explain the effect of each feature on predictions. Our model achieved a concordance index of 0.828 and an area under the curve of 0.853 at one year and 0.858 at two years on a held-out test set of 6,573 patients. These results show that a rapid test based on an electrocardiogram could be crucial in targeting and treating high-risk individuals.
translated by 谷歌翻译