逆转合成 - 鉴定一组反应物合成靶分子的方法 - 对材料设计和药物发现至关重要。基于语言模型和图形神经网络的现有机器学习方法取得了令人鼓舞的结果。在本文中,我们提出了一个框架,将基于序列和图形的方法统一为基于能量的模型(EBMS),具有不同的能量功能。本统一的透视通过全面评估性能,提供了对EBM变体的关键洞察。此外,我们在框架内提出了一种新的双重变体,通过限制两个方向之间的协议,通过限制贝叶斯的前后预测来执行一致的训练。此模型可以提高最先进的性能,对于反应类型未知的无模块的方法,提高了9.6%。
translated by 谷歌翻译
单步反转合作是逆合合成计划的基石,这是计算机辅助药物发现的至关重要的任务。单步回合合成的目的是确定导致一个反应中靶产物合成的可能反应物。通过将有机分子表示为规范串,现有的基于序列的折叠方法将乘积 - 反应性逆合合成视为序列到序列翻译问题。但是,由于确定性推断,他们中的大多数人都难以识别所需产物的多种化学反应,这与以下事实相矛盾:许多化合物可以通过各种反应类型与不同的反应物组成。在这项工作中,我们旨在增加反应多样性并使用离散的潜在变量产生各种反应物。我们提出了一种基于序列的新方法,即RetrodVcae,该方法将条件变分自动化码器纳入单步回逆转录中,并将离散的潜在变量与生成过程相关联。具体而言,RetroDVCAE使用Gumbel-Softmax分布来近似于潜在反应的分类分布,并生成与变异解码器的多组反应物。实验表明,RetroDVCAE在基准数据集和自制数据集上的最先进基准均优于最先进的基线。定量和定性结果都表明,转化vcae可以在反应类型上对多模式分布进行建模,并产生各种反应物候选物。
translated by 谷歌翻译
丙酸的主要靶标是递归地将所需分子分解成可用的构件块。现有的基于模板的逆转性方法遵循模板选择刻板印象并遭受有限训练模板,这可以防止它们发现新的反应。为了克服限制,我们提出了一种创新的retrosynesp预测框架,可以撰写超出训练模板的新型模板。据我们所知,这是第一种可以找到用于逆转金属预测的新型模板的方法。此外,我们提出了一种有效的反应物候选候选模型,可以捕获原子级变换信息,并有助于我们的方法优于现有方法,通过大边距。实验结果表明,我们的方法可以在USPTO-50K数据集中生产328个测试反应的新型模板,包括训练模板未涵盖的21个测试反应。
translated by 谷歌翻译
逆合合成是一种将分子转化为潜在反应物的过程,因此鉴定了合成途径。我们提出了一个新颖的生成框架,称为$ \ mathsf {g^2retro} $,用于一步回曲预测。 $ \ mathsf {g^2retro} $模仿合成反应的反向逻辑,也就是说,首先预测反应中心以将靶分子转换为名为合成的片段,然后将合成剂转化为反应剂,然后按照先前的基于半电压的方法转换为反应剂。在预测反应中心时,$ \ mathsf {g^2retro} $定义了一组全面的反应中心类型,并通过考虑多个反应中心候选者来实现预测反应的多样性。在完成合成子时,$ \ mathsf {g^2retro} $部署了一系列子结构附件,以将合成物转换为反应物,该反应物利用了要完成的合成结构的最新结构的整体视图,以及所有所涉及的合成物和所有合成的结构产品结构。在这里,我们证明$ \ mathsf {g^2retro} $能够更好地对基准数据集中最可能的反应物进行优先级,而不是最先进的方法,并且发现了不包括在该方法中基准数据集。
translated by 谷歌翻译
反转合是药物发现的主要任务。通过许多现有方法,它被称为生成图的问题。具体而言,这些方法首先识别反应中心,并相应地打破靶分子以生成合成子。反应物是通过顺序添加到合成图或直接添加正确的离开组来生成反应物。但是,两种策略都遭受了添加原子以来会导致长期的预测顺序,从而增加了产生难度,同时添加离开组只能考虑训练集中的序列,从而导致概括不佳。在本文中,我们提出了一个新颖的端到端图生成模型,用于逆转录合成预测,该模型顺序识别反应中心,生成合成子,并将基序添加到合成子中以生成反应物。由于化学有意义的基序比原子大,比离开组还小,因此与添加原子相比,与添加离开组相比,我们的方法的预测复杂性较低。基准数据集上的实验表明,所提出的模型显着胜过先前的最新算法。
translated by 谷歌翻译
化学反应预测,涉及正向合成和逆合合成预测,是有机合成中的一个基本问题。流行的计算范式将综合预测作为序列到序列翻译问题,其中采用典型的微笑来分子表示。然而,通用微笑忽略了化学反应的特征,其中分子图拓扑在很大程度上从反应物到产物不变,如果直接施加了笑容,则会导致微笑的次优性能。在本文中,我们提出了与根对准的微笑(R-Smiles),该微笑指定了产品和反应物微笑之间的紧密比对以进行更有效的合成预测。由于严格的一对一映射和降低的编辑距离,计算模型很大程度上免于学习复杂的语法,并致力于学习反应的化学知识。我们将提出的R-Smiles与各种最新基准进行比较,并表明它明显优于所有基准,这表明了所提出的方法的优越性。
translated by 谷歌翻译
Despite significant progress of generative models in the natural sciences, their controllability remains challenging. One fundamentally missing aspect of molecular or protein generative models is an inductive bias that can reflect continuous properties of interest. To that end, we propose the Regression Transformer (RT), a novel method that abstracts regression as a conditional sequence modeling problem. This introduces a new paradigm of multitask language models which seamlessly bridge sequence regression and conditional sequence generation. We thoroughly demonstrate that, despite using a nominal-scale training objective, the RT matches or surpasses the performance of conventional regression models in property prediction tasks of small molecules, proteins and chemical reactions. Critically, priming the same model with continuous properties yields a highly competitive conditional generative model that outperforms specialized approaches in a substructure-constrained, property-driven molecule generation benchmark. Our dichotomous approach is facilitated by a novel, alternating training scheme that enables the model to decorate seed sequences by desired properties, e.g., to optimize reaction yield. In sum, the RT is the first report of a multitask model that concurrently excels at predictive and generative tasks in biochemistry. This finds particular application in property-driven, local exploration of the chemical or protein space and could pave the road toward foundation models in material design. The code to reproduce all experiments of the paper is available at: https://github.com/IBM/regression-transformer
translated by 谷歌翻译
基于深度学习的分子建模的最新进步令人兴奋地加速硅药发现。可获得血清的生成模型,构建原子原子和键合或逐片键的分子。然而,许多药物发现项目需要固定的支架以存在于所生成的分子中,并纳入该约束仅探讨了该约束。在这里,我们提出了一种基于图形的模型,其自然地支持支架作为生成过程的初始种子,这是可能的,因为它不调节在发电历史上。我们的实验表明,Moler与最先进的方法进行了相当的方法,在无约会的分子优化任务上,并且在基于脚手架的任务上优于它们,而不是比现有方法从培训和样本更快的数量级。此外,我们展示了许多看似小设计选择对整体性能的影响。
translated by 谷歌翻译
我们解决了受控生成小分子的任务,该任务需要在某些约束(例如,与参考分子相似)下找到具有所需特性的新分子。在这里,我们介绍了Molmim,这是一种用于学习信息丰富且聚集的潜在空间的小分子药物发现的概率自动编码器。 Molmim通过共同信息机(MIM)学习训练,并提供可变长度微笑字符串的固定长度表示。由于编码器模型可以通过无效样品的``孔''来学习表示形式,因此我们在这里提出了训练程序的新型扩展,该过程促进了促进密集的潜在空间,并允许模型从潜在代码的随机扰动中采样有效分子。我们提供了Molmim与几个可变大小和固定尺寸的编码器模型的彻底比较,这表明了Molmim的上一代,如有效性,独特性和新颖性而言。然后,我们利用CMA-E,一种天真的黑盒和无梯度的搜索算法,是Molmim的潜在空间来实现属性引导分子优化的任务。我们实现了最新的单个属性优化任务以及多目标优化的具有挑战性的任务,从而提高了先前的成功率SOTA超过5 \%。我们将强有力的结果归因于莫尔米姆的潜在表示,这些表示在潜在空间中聚集了相似的分子,而CMA-ES通常用作基线优化方法。我们还证明了莫尔米姆在计算有限的制度中有利,使其成为这种情况的有吸引力的模型。
translated by 谷歌翻译
需要产生具有所需特性的有效分子的分子产生是基本但具有挑战性的任务。近年来,目睹了原子级自动回归模型的快速发展,这通常构造在添加原子级节点和边缘的顺序动作之后的图表。然而,这些原子级模型忽略了高频子结构,其不仅捕获分子中原子组合的规律而且通常与所需的化学性质相关,因此可以是用于产生高质量分子的次优。在本文中,我们提出了一种方法来自动发现这种常见的子结构,从给定的分子图中呼叫图形件。我们还提出了一种基于图形件产生分子图的图片变形AutoEncoder(GP-VAE)。实验表明,我们的GP-VAE模型不仅可以实现更好的性能,而不是用于分发 - 学习,属性优化和约束性能优化任务,但也是计算效率的最先进的基线。
translated by 谷歌翻译
没有标签的预处理分子表示模型是各种应用的基础。常规方法主要是处理2D分子图,并仅专注于2D任务,使其预验证的模型无法表征3D几何形状,因此对于下游3D任务有缺陷。在这项工作中,我们从完整而新颖的意义上处理了3D分子预处理。特别是,我们首先提议采用基于能量的模型作为预处理的骨干,该模型具有实现3D空间对称性的优点。然后,我们为力预测开发了节点级预处理损失,在此过程中,我们进一步利用了Riemann-Gaussian分布,以确保损失为E(3) - 不变,从而实现了更多的稳健性。此外,还利用了图形噪声量表预测任务,以进一步促进最终的性能。我们评估了从两个具有挑战性的3D基准:MD17和QM9的大规模3D数据集GEOM-QM9预测的模型。实验结果支持我们方法对当前最新预处理方法的更好疗效,并验证我们设计的有效性。
translated by 谷歌翻译
它是科学技术的基础,能够预测化学反应及其性质。为实现此类技能,重要的是要培养良好的化学反应表示,或者可以自动从数据中学习此类表示的良好深度学习架构。目前没有普遍和广泛采用的方法,可强健地代表化学反应。大多数现有方法患有一个或多个缺点,例如:(1)缺乏普遍性; (2)缺乏稳健性; (3)缺乏可解释性;或(4)需要过度手动预处理。在这里,我们利用基于图的分子结构表示,以开发和测试一个超图注意神经网络方法,以一次解决反应表示和性能 - 预测问题,减轻了上述缺点。我们使用三个独立数据集化学反应评估三个实验中的这种超照片表示。在所有实验中,基于超图的方法与其他表示和它们相应的化学反应模型相匹配或优于相应的模型,同时产生可解释的多级表示。
translated by 谷歌翻译
学习神经集功能在许多应用中越来越重要,例如产品推荐和AI辅助药物发现中的复合选择。在功能值Oracle下,大多数现有的作品研究方法学方法学方法学都需要昂贵的监督信号。这使得仅在最佳子集(OS)Oracle下仅进行弱监督的应用程序使其不切实际,而研究的研究令人惊讶地忽略了。在这项工作中,我们提出了一个原则上但实用的最大似然学习框架,称为等效性,该框架同时满足OS ORACLE下的以下学习设置功能:i)置入了模型的设定质量函数的置换率; ii)许可不同地面套件; iii)最低先验;和iv)可伸缩性。我们框架的主要组成部分涉及:对设定质量函数的基于能量的处理,深空式体系结构来处理置换不变性,平均场变异推理及其摊销变体。由于这些高级体系结构的优雅组合,对三个现实世界应用的实证研究(包括亚马逊产品推荐,设置异常检测和虚拟筛选的复合选择)表明,EquivSet的表现优于基本线的大幅度。
translated by 谷歌翻译
Molecular conformation generation aims to generate three-dimensional coordinates of all the atoms in a molecule and is an important task in bioinformatics and pharmacology. Previous methods usually first predict the interatomic distances, the gradients of interatomic distances or the local structures (e.g., torsion angles) of a molecule, and then reconstruct its 3D conformation. How to directly generate the conformation without the above intermediate values is not fully explored. In this work, we propose a method that directly predicts the coordinates of atoms: (1) the loss function is invariant to roto-translation of coordinates and permutation of symmetric atoms; (2) the newly proposed model adaptively aggregates the bond and atom information and iteratively refines the coordinates of the generated conformation. Our method achieves the best results on GEOM-QM9 and GEOM-Drugs datasets. Further analysis shows that our generated conformations have closer properties (e.g., HOMO-LUMO gap) with the groundtruth conformations. In addition, our method improves molecular docking by providing better initial conformations. All the results demonstrate the effectiveness of our method and the great potential of the direct approach. The code is released at https://github.com/DirectMolecularConfGen/DMCG
translated by 谷歌翻译
人工智能(AI)在过去十年中一直在改变药物发现的实践。各种AI技术已在广泛的应用中使用,例如虚拟筛选和药物设计。在本调查中,我们首先概述了药物发现,并讨论了相关的应用,可以减少到两个主要任务,即分子性质预测和分子产生。然后,我们讨论常见的数据资源,分子表示和基准平台。此外,为了总结AI在药物发现中的进展情况,我们介绍了在调查的论文中包括模型架构和学习范式的相关AI技术。我们预计本调查将作为有兴趣在人工智能和药物发现界面工作的研究人员的指南。我们还提供了GitHub存储库(HTTPS:///github.com/dengjianyuan/survey_survey_au_drug_discovery),其中包含文件和代码,如适用,作为定期更新的学习资源。
translated by 谷歌翻译
本文介绍了一个新颖而通用的框架,以利用最佳运输工具来解决监督标记的图形预测的旗舰任务。我们将问题提出为融合Gromov-Wasserstein(FGW)损失的回归,并提出了一个依靠FGW Barycenter的预测模型,该模型的权重取决于输入。首先,我们基于内核脊回归引入了一个非参数估计量,该估计量得到了理论结果,例如一致性和过量风险绑定。接下来,我们提出了一个可解释的参数模型,其中Barycenter权重用神经网络建模,并进一步学习了FGW Barycenter的图形。数值实验表明了该方法的强度及其在模拟数据上标记的图形空间以及难以实现的代谢识别问题上插值的能力,在这种情况下,它几乎没有工程学才能达到非常好的性能。
translated by 谷歌翻译
已经引入了生成流量网络(GFlowNETS)作为在主动学习背景下采样多样化候选的方法,具有培训目标,其使它们与给定奖励功能成比例地进行比例。在本文中,我们显示了许多额外的GFLOWN的理论特性。它们可用于估计联合概率分布和一些变量未指定的相应边际分布,并且特别感兴趣地,可以代表像集合和图形的复合对象的分布。 Gflownets摊销了通常通过计算昂贵的MCMC方法在单个但训练有素的生成通行证中进行的工作。它们还可用于估计分区功能和自由能量,给定子集(子图)的超标(超图)的条件概率,以及给定集合(图)的所有超标仪(超图)的边际分布。我们引入了熵和相互信息估计的变体,从帕累托前沿采样,与奖励最大化策略的连接,以及随机环境的扩展,连续动作和模块化能量功能。
translated by 谷歌翻译
We seek to automate the design of molecules based on specific chemical properties. In computational terms, this task involves continuous embedding and generation of molecular graphs. Our primary contribution is the direct realization of molecular graphs, a task previously approached by generating linear SMILES strings instead of graphs. Our junction tree variational autoencoder generates molecular graphs in two phases, by first generating a tree-structured scaffold over chemical substructures, and then combining them into a molecule with a graph message passing network. This approach allows us to incrementally expand molecules while maintaining chemical validity at every step. We evaluate our model on multiple tasks ranging from molecular generation to optimization. Across these tasks, our model outperforms previous state-of-the-art baselines by a significant margin.
translated by 谷歌翻译
Energy-Based Models (EBMs) capture dependencies between variables by associating a scalar energy to each configuration of the variables. Inference consists in clamping the value of observed variables and finding configurations of the remaining variables that minimize the energy. Learning consists in finding an energy function in which observed configurations of the variables are given lower energies than unobserved ones. The EBM approach provides a common theoretical framework for many learning models, including traditional discriminative and generative approaches, as well as graph-transformer networks, conditional random fields, maximum margin Markov networks, and several manifold learning methods.Probabilistic models must be properly normalized, which sometimes requires evaluating intractable integrals over the space of all possible variable configurations. Since EBMs have no requirement for proper normalization, this problem is naturally circumvented. EBMs can be viewed as a form of non-probabilistic factor graphs, and they provide considerably more flexibility in the design of architectures and training criteria than probabilistic approaches.
translated by 谷歌翻译
Structure-based drug design (SBDD) aims to discover drug candidates by finding molecules (ligands) that bind tightly to a disease-related protein (targets), which is the primary approach to computer-aided drug discovery. Recently, applying deep generative models for three-dimensional (3D) molecular design conditioned on protein pockets to solve SBDD has attracted much attention, but their formulation as probabilistic modeling often leads to unsatisfactory optimization performance. On the other hand, traditional combinatorial optimization methods such as genetic algorithms (GA) have demonstrated state-of-the-art performance in various molecular optimization tasks. However, they do not utilize protein target structure to inform design steps but rely on a random-walk-like exploration, which leads to unstable performance and no knowledge transfer between different tasks despite the similar binding physics. To achieve a more stable and efficient SBDD, we propose Reinforced Genetic Algorithm (RGA) that uses neural models to prioritize the profitable design steps and suppress random-walk behavior. The neural models take the 3D structure of the targets and ligands as inputs and are pre-trained using native complex structures to utilize the knowledge of the shared binding physics from different targets and then fine-tuned during optimization. We conduct thorough empirical studies on optimizing binding affinity to various disease targets and show that RGA outperforms the baselines in terms of docking scores and is more robust to random initializations. The ablation study also indicates that the training on different targets helps improve performance by leveraging the shared underlying physics of the binding processes. The code is available at https://github.com/futianfan/reinforced-genetic-algorithm.
translated by 谷歌翻译