前导分割方法将输出图表示为像素网格。我们研究了一个替代表示,其中每个图像修补程序都是对象边缘的建模,作为具有与每种补丁标签概率耦合的$ k $顶点的多边形。通过采用可分辨率的神经渲染器来创建光栅图像来优化顶点。然后将划分区域与地面真相分割进行比较。我们的方法获得多个最先进的结果:76.26 \%Miou在城市景观验证,90.92 \%iou vaihingen建筑分割基准,66.82 \%iou for monu显微镜数据集,鸟类的90.91 \%基准幼崽。我们的培训和再现这些结果的代码作为补充。
translated by 谷歌翻译
扩散概率方法用于最先进的图像生成。在这项工作中,我们介绍了一种用于扩展用于执行图像分割的模型的方法。该方法学习端到端,而不依赖于预先训练的骨干。通过对两个编码器的输出求和来合并输入图像中的信息和分段图的当前估计。然后使用额外的编码层和解码器来使用扩散模型来迭代地改进分割图。由于扩散模型是概率的,因此将其应用于多次并且结果被合并到最终分割图中。新方法在CityCapes验证集中获得最先进的结果,Vaihingen构建分段基准以及Monuseg数据集。
translated by 谷歌翻译
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
translated by 谷歌翻译
Image segmentation is often ambiguous at the level of individual image patches and requires contextual information to reach label consensus. In this paper we introduce Segmenter, a transformer model for semantic segmentation. In contrast to convolution-based methods, our approach allows to model global context already at the first layer and throughout the network. We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation. To do so, we rely on the output embeddings corresponding to image patches and obtain class labels from these embeddings with a point-wise linear decoder or a mask transformer decoder. We leverage models pre-trained for image classification and show that we can fine-tune them on moderate sized datasets available for semantic segmentation. The linear decoder allows to obtain excellent results already, but the performance can be further improved by a mask transformer generating class masks. We conduct an extensive ablation study to show the impact of the different parameters, in particular the performance is better for large models and small patch sizes. Segmenter attains excellent results for semantic segmentation. It outperforms the state of the art on both ADE20K and Pascal Context datasets and is competitive on Cityscapes.
translated by 谷歌翻译
视觉表示学习是解决各种视力问题的关键。依靠开创性的网格结构先验,卷积神经网络(CNN)已成为大多数深视觉模型的事实上的标准架构。例如,经典的语义分割方法通常采用带有编码器编码器体系结构的完全横向卷积网络(FCN)。编码器逐渐减少了空间分辨率,并通过更大的接受场来学习更多抽象的视觉概念。由于上下文建模对于分割至关重要,因此最新的努力一直集中在通过扩张(即极度)卷积或插入注意力模块来增加接受场。但是,基于FCN的体系结构保持不变。在本文中,我们旨在通过将视觉表示学习作为序列到序列预测任务来提供替代观点。具体而言,我们部署纯变压器以将图像编码为一系列贴片,而无需局部卷积和分辨率减少。通过在变压器的每一层中建立的全球环境,可以学习更强大的视觉表示形式,以更好地解决视力任务。特别是,我们的细分模型(称为分割变压器(SETR))在ADE20K上擅长(50.28%MIOU,这是提交当天测试排行榜中的第一个位置),Pascal环境(55.83%MIOU),并在CityScapes上达到竞争成果。此外,我们制定了一个分层局部全球(HLG)变压器的家族,其特征是窗户内的本地关注和跨窗户的全球性专注于层次结构和金字塔架构。广泛的实验表明,我们的方法在各种视觉识别任务(例如,图像分类,对象检测和实例分割和语义分割)上实现了吸引力的性能。
translated by 谷歌翻译
尽管近期基于深度学习的语义细分,但远程感测图像的自动建筑检测仍然是一个具有挑战性的问题,由于全球建筑物的出现巨大变化。误差主要发生在构建足迹的边界,阴影区域,以及检测外表面具有与周围区域非常相似的反射率特性的建筑物。为了克服这些问题,我们提出了一种生成的对抗基于网络的基于网络的分割框架,其具有嵌入在发电机中的不确定性关注单元和改进模块。由边缘和反向关注单元组成的细化模块,旨在精炼预测的建筑地图。边缘注意力增强了边界特征,以估计更高的精度,并且反向关注允许网络探索先前估计区域中缺少的功能。不确定性关注单元有助于网络解决分类中的不确定性。作为我们方法的权力的衡量标准,截至2021年12月4日,它在Deepglobe公共领导板上的第二名,尽管我们的方法的主要重点 - 建筑边缘 - 并不完全对齐用于排行榜排名的指标。 DeepGlobe充满挑战数据集的整体F1分数为0.745。我们还报告了对挑战的Inria验证数据集的最佳成绩,我们的网络实现了81.28%的总体验证,总体准确性为97.03%。沿着同一条线,对于官方Inria测试数据集,我们的网络总体上得分77.86%和96.41%,而且准确性。
translated by 谷歌翻译
医疗图像分割有助于计算机辅助诊断,手术和治疗。数字化组织载玻片图像用于分析和分段腺,核和其他生物标志物,这些标志物进一步用于计算机辅助医疗应用中。为此,许多研究人员开发了不同的神经网络来对组织学图像进行分割,主要是这些网络基于编码器编码器体系结构,并且还利用了复杂的注意力模块或变压器。但是,这些网络不太准确地捕获相关的本地和全局特征,并在多个尺度下具有准确的边界检测,因此,我们提出了一个编码器折叠网络,快速注意模块和多损耗函数(二进制交叉熵(BCE)损失的组合) ,焦点损失和骰子损失)。我们在两个公开可用数据集上评估了我们提出的网络的概括能力,用于医疗图像分割Monuseg和Glas,并胜过最先进的网络,在Monuseg数据集上提高了1.99%的提高,而GLAS数据集则提高了7.15%。实施代码可在此链接上获得:https://bit.ly/histoseg
translated by 谷歌翻译
在弱监督的本地化设置中,监督作为图像级标签。我们建议使用图像分类器$ F $,并培训发电网络$ G $,给定输入图像,指示图像内对象位置的每个像素权重映射。通过最大限度地减少原始图像上的分类器F $ F $的输出之间的差异来培训网络$ G $培训。该方案需要一个正常化术语,确保$ G $不提供统一的重量,以及提前停止标准,以防止超过段图像。我们的结果表明,该方法在充满挑战的细粒度分类数据集中的相当余量以及通用图像识别数据集中优于现有的本地化方法。另外,在细粒度分类数据集中的弱监督分割中,所获得的权重映射也是最新的。
translated by 谷歌翻译
Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoderdecoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (i.e., without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first position in the highly competitive ADE20K test server leaderboard on the day of submission.
translated by 谷歌翻译
语义分割是图像的像素明智标记。由于在像素级别定义了问题,因此确定图像类标签是不可接受的,而是在原始图像像素分辨率下本地化它们是必要的。通过卷积神经网络(CNN)在创建语义,高级和分层图像特征方面的非凡能力推动;在过去十年中提出了几种基于深入的学习的2D语义分割方法。在本调查中,我们主要关注最近的语义细分科学发展,特别是在使用2D图像的基于深度学习的方法。我们开始分析了对2D语义分割的公共图像集和排行榜,概述了性能评估中使用的技术。在研究现场的演变时,我们按时间顺序分类为三个主要时期,即预先和早期的深度学习时代,完全卷积的时代和后FCN时代。我们在技术上分析了解决领域的基本问题的解决方案,例如细粒度的本地化和规模不变性。在借阅我们的结论之前,我们提出了一张来自所有提到的时代的方法表,每个方法都概述了他们对该领域的贡献。我们通过讨论现场当前的挑战以及他们已经解决的程度来结束调查。
translated by 谷歌翻译
语义分割是将类标签分配给图像中每个像素的问题,并且是自动车辆视觉堆栈的重要组成部分,可促进场景的理解和对象检测。但是,许多表现最高的语义分割模型非常复杂且笨拙,因此不适合在计算资源有限且低延迟操作的板载自动驾驶汽车平台上部署。在这项调查中,我们彻底研究了旨在通过更紧凑,更有效的模型来解决这种未对准的作品,该模型能够在低内存嵌入式系统上部署,同时满足实时推理的限制。我们讨论了该领域中最杰出的作品,根据其主要贡献将它们置于分类法中,最后我们评估了在一致的硬件和软件设置下,所讨论模型的推理速度,这些模型代表了具有高端的典型研究环境GPU和使用低内存嵌入式GPU硬件的现实部署方案。我们的实验结果表明,许多作品能够在资源受限的硬件上实时性能,同时说明延迟和准确性之间的一致权衡。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN),尤其是U-NET,一直是医学图像处理时代的流行技术。具体而言,开创性的U-NET及其替代方案成功地设法解决了各种各样的医学图像分割任务。但是,这些体系结构在本质上是不完美的,因为它们无法表现出长距离相互作用和空间依赖性,从而导致具有可变形状和结构的医学图像分割的严重性能下降。针对序列到序列预测的初步提议的变压器已成为替代体系结构,以精确地模拟由自我激进机制辅助的全局信息。尽管设计了可行的设计,但利用纯变压器来进行图像分割目的,可能导致限制的定位容量,导致低级功能不足。因此,一系列研究旨在设计基于变压器的U-NET的强大变体。在本文中,我们提出了Trans-Norm,这是一种新型的深层分割框架,它随同将变压器模块合并为标准U-NET的编码器和跳过连接。我们认为,跳过连接的方便设计对于准确的分割至关重要,因为它可以帮助扩展路径和收缩路径之间的功能融合。在这方面,我们从变压器模块中得出了一种空间归一化机制,以适应性地重新校准跳过连接路径。对医学图像分割的三个典型任务进行了广泛的实验,证明了透气的有效性。代码和训练有素的模型可在https://github.com/rezazad68/transnorm上公开获得。
translated by 谷歌翻译
给定输入图像,没有其他的方法,我们的方法返回图像中的对象和描述对象的短语中的边界框。这是在开放世界范式中实现的,在该范式中,在本地化机制训练期间可能没有遇到输入图像中的对象。此外,培训发生在弱监督的环境中,那里没有界限。为了实现这一目标,我们的方法结合了两个预训练的网络:剪辑图像到文本匹配分数和BLIP图像字幕工具。培训是在可可图像及其标题上进行的,并基于剪辑。然后,在推断期间,BLIP用于生成有关当前图像各个区域的假设。我们的工作概括了弱监督的细分和短语接地,并在经验上表现出了在两个领域中的最佳状态。它还显示了我们作品中提出的纯粹监督开放世界纯粹的视觉短语接地的新任务中非常令人信服的结果。例如,在用于基准词组接地的数据集上,与使用人体字幕作为附加输入的方法相比,我们的方法导致非常适度的降解。我们的代码可在https://github.com/talshaharabany/what-is-where-by-looking上找到,可以在https:// talshaharabany/what-is-where-where-where-by-by-looking找到实时演示。
translated by 谷歌翻译
由于图像的复杂性和活细胞的时间变化,来自明亮场光显微镜图像的活细胞分割具有挑战性。最近开发的基于深度学习(DL)的方法由于其成功和有希望的结果而在医学和显微镜图像分割任务中变得流行。本文的主要目的是开发一种基于U-NET的深度学习方法,以在明亮场传输光学显微镜中分割HeLa系的活细胞。为了找到适合我们数据集的最合适的体系结构,提出了剩余的注意U-net,并将其与注意力和简单的U-NET体系结构进行了比较。注意机制突出了显着的特征,并抑制了无关图像区域中的激活。残余机制克服了消失的梯度问题。对于简单,注意力和剩余的关注U-NET,我们数据集的平均值得分分别达到0.9505、0.9524和0.9530。通过将残留和注意机制应用在一起,在平均值和骰子指标中实现了最准确的语义分割结果。应用的分水岭方法适用于这种最佳的(残留的关注)语义分割结果,使每个单元格的特定信息进行了分割。
translated by 谷歌翻译
可驱动区域的实时分割在完成汽车的自主感知中起着至关重要的作用。最近,使用深度学习的图像分割模型开发了一些快速的进步。但是,大多数进步都是在模型架构设计中取得的。在解决与细分有关的任何有监督的深度学习问题时,一个人构建的模型的成功取决于我们用于该模型的输入培训数据的数量和质量。该数据应包含良好的各种图像,以更好地工作分割模型。与数据集中的注释有关的问题可能会导致该模型在测试和验证中的压倒性I型和II型错误中得出结论,在试图解决现实世界问题时造成恶意问题。为了解决这个问题并使我们的模型更加准确,动态和健壮,数据增强涉及使用,因为它有助于扩展我们的样本培训数据并使其更好,整体上更加多样化。因此,在我们的研究中,我们专注于通过分析预先存在的图像数据集并相应地进行增强来研究数据增强的好处。我们的结果表明,现有最新模型(或SOTA)模型的性能和鲁棒性可以大大增加,而不会增加模型复杂性或推理时间。仅在对当今广泛使用中的其他几种增强方法和策略进行彻底研究及其相应的效果之后,仅在本文中决定并使用的增强作用。我们所有的结果都在广泛使用的CityScapes数据集上报告。
translated by 谷歌翻译
跨不同层的特征的聚合信息是密集预测模型的基本操作。尽管表现力有限,但功能级联占主导地位聚合运营的选择。在本文中,我们引入了细分特征聚合(AFA),以融合不同的网络层,具有更具表现力的非线性操作。 AFA利用空间和渠道注意,以计算层激活的加权平均值。灵感来自神经体积渲染,我们将AFA扩展到规模空间渲染(SSR),以执行多尺度预测的后期融合。 AFA适用于各种现有网络设计。我们的实验表明了对挑战性的语义细分基准,包括城市景观,BDD100K和Mapillary Vistas的一致而显着的改进,可忽略不计的计算和参数开销。特别是,AFA改善了深层聚集(DLA)模型在城市景观上的近6%Miou的性能。我们的实验分析表明,AFA学会逐步改进分割地图并改善边界细节,导致新的最先进结果对BSDS500和NYUDV2上的边界检测基准。在http://vis.xyz/pub/dla-afa上提供代码和视频资源。
translated by 谷歌翻译
我们展示了一个下一代神经网络架构,马赛克,用于移动设备上的高效和准确的语义图像分割。MOSAIC是通过各种移动硬件平台使用常用的神经操作设计,以灵活地部署各种移动平台。利用简单的非对称编码器 - 解码器结构,该解码器结构由有效的多尺度上下文编码器和轻量级混合解码器组成,以从聚合信息中恢复空间细节,Mosaic在平衡准确度和计算成本的同时实现了新的最先进的性能。基于搜索的分类网络,马赛克部署在定制的特征提取骨架顶部,达到目前行业标准MLPerf型号和最先进的架构,达到5%的绝对精度增益。
translated by 谷歌翻译
本文提出了一种用于对象和场景的高质量图像分割的新方法。灵感来自于形态学图像处理技术中的扩张和侵蚀操作,像素级图像分割问题被视为挤压对象边界。从这个角度来看,提出了一种新颖且有效的\ textBF {边界挤压}模块。该模块用于从内侧和外侧方向挤压对象边界,这有助于精确掩模表示。提出了双向基于流的翘曲过程来产生这种挤压特征表示,并且设计了两个特定的损耗信号以监控挤压过程。边界挤压模块可以通过构建一些现有方法构建作为即插即用模块,可以轻松应用于实例和语义分段任务。此外,所提出的模块是重量的,因此具有实际使用的潜力。实验结果表明,我们简单但有效的设计可以在几个不同的数据集中产生高质量的结果。此外,边界上的其他几个指标用于证明我们对以前的工作中的方法的有效性。我们的方法对实例和语义分割的具有利于Coco和CityCapes数据集来产生重大改进,并且在相同的设置下以前的最先进的速度优于先前的最先进的速度。代码和模型将在\ url {https:/github.com/lxtgh/bsseg}发布。
translated by 谷歌翻译
Segblocks通过根据图像区域的复杂性动态调整处理分辨率来降低现有神经网络的计算成本。我们的方法将图像拆分为低复杂性的块和尺寸块块,从而减少了操作数量和内存消耗的数量。轻量级的政策网络选择复杂区域,是使用强化学习训练的。此外,我们介绍了CUDA中实现的几个模块以处理块中的图像。最重要的是,我们的新颖的阻止模块可以防止现有方法遭受的块边界的特征不连续性,同时保持记忆消耗受到控制。我们对语义分割的城市景观,Camvid和Mapillary Vistas数据集进行的实验表明,与具有相似复杂性的静态基准相比,动态处理图像与复杂性的折衷相对于复杂性更高。例如,我们的方法将SwiftNet-RN18的浮点操作数量降低了60%,并将推理速度提高50%,而CityScapes的MIOU准确性仅降低0.3%。
translated by 谷歌翻译
在本文中,我们专注于探索有效的方法,以更快,准确和域的不可知性语义分割。受到相邻视频帧之间运动对齐的光流的启发,我们提出了一个流对齐模块(FAM),以了解相邻级别的特征映射之间的\ textit {语义流},并将高级特征广播到高分辨率特征有效地,有效地有效。 。此外,将我们的FAM与共同特征的金字塔结构集成在一起,甚至在轻量重量骨干网络(例如Resnet-18和DFNET)上也表现出优于其他实时方法的性能。然后,为了进一步加快推理过程,我们还提出了一个新型的封闭式双流对齐模块,以直接对齐高分辨率特征图和低分辨率特征图,在该图中我们将改进版本网络称为SFNET-LITE。广泛的实验是在几个具有挑战性的数据集上进行的,结果显示了SFNET和SFNET-LITE的有效性。特别是,建议的SFNET-LITE系列在使用RESNET-18主链和78.8 MIOU以120 fps运行的情况下,使用RTX-3090上的STDC主链在120 fps运行时,在60 fps运行时达到80.1 miou。此外,我们将四个具有挑战性的驾驶数据集(即CityScapes,Mapillary,IDD和BDD)统一到一个大数据集中,我们将其命名为Unified Drive细分(UDS)数据集。它包含不同的域和样式信息。我们基准了UDS上的几项代表性作品。 SFNET和SFNET-LITE仍然可以在UDS上取得最佳的速度和准确性权衡,这在如此新的挑战性环境中是强大的基准。所有代码和模型均可在https://github.com/lxtgh/sfsegnets上公开获得。
translated by 谷歌翻译