事件提取是医学文本处理的重要工作。根据医学文本注释的复杂特征,我们使用端到端事件提取模型来增强事件的输出格式信息。通过预训练和微调,我们可以提取医学文本四个维度的属性:解剖位置,主题单词,描述单词和发生状态。在测试集中,准确率为0.4511,召回率为0.3928,F1值为0.42。该模型的方法很简单,并且在第七届中国健康信息处理会议(CHIP2021)的中国电子医疗记录中赢得了挖掘临床发现事件(任务2)的任务中的第二名。
translated by 谷歌翻译
放射学报告含有在其解释图像中被放射科学家记录的多样化和丰富的临床异常。放射发现的综合语义表示将使广泛的次要使用应用来支持诊断,分类,结果预测和临床研究。在本文中,我们提出了一种新的放射学报告语料库,注释了临床调查结果。我们的注释模式捕获了可观察到的病理发现的详细说明(“病变”)和其他类型的临床问题(“医学问题”)。该模式使用了基于事件的表示来捕获细粒细节,包括断言,解剖学,特征,大小,计数等。我们的黄金标准语料库包含总共500个注释的计算机断层扫描(CT)报告。我们利用两个最先进的深度学习架构提取了触发器和论证实体,包括伯特。然后,我们使用基于BERT的关系提取模型预测触发器和参数实体(称为参数角色)之间的连接。我们使用预先从我们的机构的300万放射学报告预先培训的BERT模型实现了最佳提取性能:90.9%-93.4%f1用于查找触发器的触发器72.0%-85.6%f1,用于参数角色。为了评估型号的概括性,我们使用了从模拟胸部X射线(MIMIC-CXR)数据库中随机采样的外部验证。该验证集的提取性能为95.6%,用于发现触发器和参数角色的79.1%-89.7%,表明模型与具有不同的成像模型的跨机构数据一致。我们从模拟CXR数据库中的所有放射学报告中提取了查找事件,并为研究界提供了提取。
translated by 谷歌翻译
临床领域中的事件提取是一个探索较少的研究领域。除了大量的特定领域的行话外,缺乏培训数据,包括较长的实体,具有模糊的边界,使该任务尤其具有挑战性。在本文中,我们介绍了DICE,这是一种用于临床事件提取的强大而数据效率的生成模型。骰子框架事件提取作为有条件的生成问题,并利用域专家提供的描述来提高低资源设置下的性能。此外,DICE学会了与辅助提及的识别任务一起定位和约束生物医学提及,该任务与事件提取任务共同培训,以利用任务间的依赖性,并进一步纳入确定的提及作为其各自任务的触发和论证候选者。我们还介绍了MacCrobat-EE,这是第一个带有事件参数注释的临床事件提取数据集。我们的实验证明了在临床领域的低数据设置下骰子的鲁棒性,以及将柔性关节训练并提及标记纳入生成方法的好处。
translated by 谷歌翻译
生物医学研究正在以这种指数速度增长,科学家,研究人员和从业者不再能够应对该领域发表的文献的数量。文献中提出的知识需要以这种方式系统化,可以轻松找到声明和假设,访问和验证。知识图可以为文献提供这样的语义知识表示框架。然而,为了构建知识图形,有必要以生物医学实体之间的关系形式提取知识并使两个实体和关系类型进行正常化。在本文中,我们展示并比较了少数基于规则和基于机器学习的(天真的贝叶斯,随机森林作为传统机器学习方法和T5基础的示例,作为现代深层学习的示例)可扩展关系从生物医学中提取的方法集成到知识图中的文献。我们研究了如何为不平衡和相当小的数据集进行弹性,显示T5模型,由于其在大型C4数据集以及不平衡数据上进行预培训,因此T5模型处理得好的小型数据集。最佳执行模型是T5模型在平衡数据上进行微调,报告F1分数为0.88。
translated by 谷歌翻译
知识库问题应答(KBQA)旨在在外部知识库的帮助下回答自然语言问题。核心思想是找到内部知识与知识库的已知三元组之间的内部知识之间的联系。 KBQA任务管道包含几个步骤,包括实体识别,关系提取和实体链接。这种管道方法意味着任何过程中的错误将不可避免地传播到最终预测。为了解决上述问题,本文提出了一种具有预培训语言模型(PLM)和知识图(KG)的语料库生成 - 检索方法(CGRM)。首先,基于MT5模型,我们设计了两个新的预训练任务:基于段落的知识屏蔽语言建模和问题,以获取知识增强型T5(KT5)模型。其次,在用一系列启发式规则预处理知识图的预处理之后,KT5模型基于处理的三元组生成自然语言QA对。最后,我们通过检索合成数据集直接解决QA。我们在NLPCC-ICCPOL 2016 KBQA数据集上测试我们的方法,结果表明,我们的框架提高了KBQA的性能,直接向前的方法与最先进的方法竞争。
translated by 谷歌翻译
随着信息技术的快速发展,在线平台已经产生了巨大的文本资源。作为一种特定形式的信息提取(即),事件提取(EE)由于其自动从人类语言提取事件的能力而增加了普及。但是,事件提取有限的文献调查。现有审查工作要么花费很多努力,用于描述各种方法的细节或专注于特定领域。本研究提供了全面概述了最先进的事件提取方法及其从文本的应用程序,包括闭域和开放式事件提取。这项调查的特点是它提供了适度复杂性的概要,避免涉及特定方法的太多细节。本研究侧重于讨论代表作品的常见角色,应用领域,优势和缺点,忽略各个方法的特殊性。最后,我们总结了常见问题,当前解决方案和未来的研究方向。我们希望这项工作能够帮助研究人员和从业者获得最近的事件提取的快速概述。
translated by 谷歌翻译
自然语言理解的关系提取使得创新和鼓励新颖的商业概念成为可能,并促进新的数字化决策过程。目前的方法允许提取与固定数量的实体的关系作为属性。提取与任意数量的属性的关系需要复杂的系统和昂贵的关系触发注释来帮助这些系统。我们将多属性关系提取(MARE)引入具有两种方法的假设问题,促进从业务用例到数据注释的显式映射。避免精细的注释约束简化了关系提取方法的应用。评估将我们的模型与当前最先进的事件提取和二进制关系提取方法进行了比较。与普通多属性关系的提取相比,我们的方法表现出改进。
translated by 谷歌翻译
由于结构化数据通常不足,因此在开发用于临床信息检索和决策支持系统模型时,需要从电子健康记录中的自由文本中提取标签。临床文本中最重要的上下文特性之一是否定,这表明没有发现。我们旨在通过比较荷兰临床注释中的三种否定检测方法来改善标签的大规模提取。我们使用Erasmus医疗中心荷兰临床语料库比较了基于ContextD的基于规则的方法,即使用MEDCAT和(Fineted)基于Roberta的模型的BilstM模型。我们发现,Bilstm和Roberta模型都在F1得分,精度和召回方面始终优于基于规则的模型。此外,我们将每个模型的分类错误系统地分类,这些错误可用于进一步改善特定应用程序的模型性能。在性能方面,将三个模型结合起来并不有益。我们得出的结论是,尤其是基于Bilstm和Roberta的模型在检测临床否定方面非常准确,但是最终,根据手头的用例,这三种方法最终都可以可行。
translated by 谷歌翻译
对于医疗保健提供者提供适当的患者护理的准确和详细说明,包括患者时​​间表中的药物变化,至关重要。医疗保健提供者或患者本身可能会引发患者药物的改变。用药更改采用多种形式,包括处方药和相关剂量修饰。这些更改提供了有关患者整体健康以及导致当前护理的理由的信息。然后,未来的护理可以基于患者的最终状态。这项工作探讨了从自由文本临床注释中自动提取药物变化信息。上下文药物事件数据集(CMED)是临床注释的语料库,其注释可以通过多种变化相关的属性来表征药物变化,包括更改的类型(启动,停止,增加等),更改,时间性,时间性,时间性,时间性,时间性,时间。改变可能性和否定。使用CMED,我们确定了临床文本中的药物提及,并提出了三个新型的基于BERT的新型基于BERT的系统,以解决注释的药物变化特征。我们证明,我们建议的体系结构改善了对CMED的初始工作改善药物变更分类的性能。我们确定了0.959 F1的高性能的药物提及,我们提出的系统将药物变化及其属性分类为0.827 F1。
translated by 谷歌翻译
从文本中获取结构事件知识的事件提取(EE)可以分为两个子任务:事件类型分类和元素提取(即在不同的角色模式下识别触发器和参数)。由于不同的事件类型始终拥有独特的提取模式(即角色模式),因此EE先前的工作通常遵循孤立的学习范式,对不同的事件类型独立执行元素提取。它忽略了事件类型和参数角色之间有意义的关联,导致频繁类型/角色的性能相对较差。本文提出了一个新型的EE任务神经关联框架。给定文档,它首先通过构造文档级别的图形来执行类型分类,以关联不同类型的句子节点,并采用图形注意网络来学习句子嵌入。然后,通过构建一个通用参数角色模式来实现元素提取,并具有参数遗传机制,以增强提取元素的角色偏好。因此,我们的模型考虑了EE期间的类型和角色关联,从而使它们之间的隐式信息共享。实验结果表明,我们的方法始终优于两个子任务中大多数最新的EE方法。特别是,对于具有较少培训数据的类型/角色,该性能优于现有方法。
translated by 谷歌翻译
There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI systems utilizing clinical narratives. However, there are few clinical language models, the largest of which trained in the clinical domain is comparatively small at 110 million parameters (compared with billions of parameters in the general domain). It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured EHRs. In this study, we develop from scratch a large clinical language model - GatorTron - using >90 billion words of text (including >82 billion words of de-identified clinical text) and systematically evaluate it on 5 clinical NLP tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), and medical question answering (MQA). We examine how (1) scaling up the number of parameters and (2) scaling up the size of the training data could benefit these NLP tasks. GatorTron models scale up the clinical language model from 110 million to 8.9 billion parameters and improve 5 clinical NLP tasks (e.g., 9.6% and 9.5% improvement in accuracy for NLI and MQA), which can be applied to medical AI systems to improve healthcare delivery. The GatorTron models are publicly available at: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og.
translated by 谷歌翻译
Objective: Social Determinants of Health (SDOH) influence personal health outcomes and health systems interactions. Health systems capture SDOH information through structured data and unstructured clinical notes; however, clinical notes often contain a more comprehensive representation of several key SDOH. The objective of this work is to assess the SDOH information gain achievable by extracting structured semantic representations of SDOH from the clinical narrative and combining these extracted representations with available structured data. Materials and Methods: We developed a natural language processing (NLP) information extraction model for SDOH that utilizes a deep learning entity and relation extraction architecture. In an electronic health record (EHR) case study, we applied the SDOH extractor to a large existing clinical data set with over 200,000 patients and 400,000 notes and compared the extracted information with available structured data. Results: The SDOH extractor achieved 0.86 F1 on a withheld test set. In the EHR case study, we found 19\% of current tobacco users, 10\% of drug users, and 32\% of homeless patients only include documentation of these risk factors in the clinical narrative. Conclusions: Patients who are at-risk for negative health outcomes due to SDOH may be better served if health systems are able to identify SDOH risk factors and associated social needs. Structured semantic representations of text-encoded SDOH information can augment existing structured, and this more comprehensive SDOH representation can assist health systems in identifying and addressing social needs.
translated by 谷歌翻译
事件提取,旨在自动获取文档结构信息的技术,在许多领域中吸引了越来越多的关注。大多数现有工作通过将令牌视为不同的角色,令牌级多标签分类框架讨论此问题,同时忽略文档的编写方式。写作风格是一个特殊的内容,用于组织文件,它是相对固定在具有特殊领域的文档中(例如,财务,医疗文件等)。我们认为写作风格包含重要的线索来判断令牌的角色,这种模式的无知可能导致现有工作的性能下降。为此,我们将文档中的写作风格模拟作为参数角色的分布,即角色排名分配,并提出了一种基于角色排名分布的监督机制的事件提取模型,通过监督培训过程来捕获这种模式事件提取任务。我们将模型与在几个真实世界数据集上的最先进的方法进行比较。经验结果表明,我们的方法优于捕获模式的其他替代品。这验证了写入风格包含可以提高事件提取任务性能的有价值的信息。
translated by 谷歌翻译
拼写错误纠正是自然语言处理中具有很长历史的主题之一。虽然以前的研究取得了显着的结果,但仍然存在挑战。在越南语中,任务的最先进的方法从其相邻音节中介绍了一个音节的上下文。然而,该方法的准确性可能是不令人满意的,因为如果模型可能会失去上下文,如果两个(或更多)拼写错误彼此静置。在本文中,我们提出了一种纠正越南拼写错误的新方法。我们使用深入学习模型解决错误错误和拼写错误错误的问题。特别地,嵌入层由字节对编码技术提供支持。基于变压器架构的序列模型的序列使我们的方法与上一个问题不同于同一问题的方法。在实验中,我们用大型合成数据集训练模型,这是随机引入的拼写错误。我们使用现实数据集测试所提出的方法的性能。此数据集包含11,202个以9,341不同的越南句子中的人造拼写错误。实验结果表明,我们的方法达到了令人鼓舞的表现,检测到86.8%的误差,81.5%纠正,分别提高了最先进的方法5.6%和2.2%。
translated by 谷歌翻译
Objective. The impact of social determinants of health (SDoH) on patients' healthcare quality and the disparity is well-known. Many SDoH items are not coded in structured forms in electronic health records. These items are often captured in free-text clinical notes, but there are limited methods for automatically extracting them. We explore a multi-stage pipeline involving named entity recognition (NER), relation classification (RC), and text classification methods to extract SDoH information from clinical notes automatically. Materials and Methods. The study uses the N2C2 Shared Task data, which was collected from two sources of clinical notes: MIMIC-III and University of Washington Harborview Medical Centers. It contains 4480 social history sections with full annotation for twelve SDoHs. In order to handle the issue of overlapping entities, we developed a novel marker-based NER model. We used it in a multi-stage pipeline to extract SDoH information from clinical notes. Results. Our marker-based system outperformed the state-of-the-art span-based models at handling overlapping entities based on the overall Micro-F1 score performance. It also achieved state-of-the-art performance compared to the shared task methods. Conclusion. The major finding of this study is that the multi-stage pipeline effectively extracts SDoH information from clinical notes. This approach can potentially improve the understanding and tracking of SDoHs in clinical settings. However, error propagation may be an issue, and further research is needed to improve the extraction of entities with complex semantic meanings and low-resource entities using external knowledge.
translated by 谷歌翻译
产品的属性值是任何电子商务平台中必不可少的组件。属性值提取(AVE)涉及从其标题或描述中提取产品的属性及其值。在本文中,我们建议使用生成框架解决AVE任务。我们通过将AVE任务作为生成问题制定,即基于单词序列和基于位置的生成范式,即基于单词序列和位置序列。我们在两个数据集上进行实验,在该数据集中生成方法获得了新的最新结果。这表明我们可以将建议的框架用于AVE任务,而无需其他标记或特定于任务的模型设计。
translated by 谷歌翻译
在文档级事件提取(DEE)任务中,事件参数始终散布在句子(串行问题)中,并且多个事件可能存在于一个文档(多事件问题)中。在本文中,我们认为事件参数的关系信息对于解决上述两个问题具有重要意义,并提出了一个新的DEE框架,该框架可以对关系依赖关系进行建模,称为关系授权的文档级事件提取(REDEE)。更具体地说,该框架具有一种新颖的量身定制的变压器,称为关系增强的注意变形金刚(RAAT)。 RAAT可扩展以捕获多尺度和多启动参数关系。为了进一步利用关系信息,我们介绍了一个单独的事件关系预测任务,并采用多任务学习方法来显式增强事件提取性能。广泛的实验证明了该方法的有效性,该方法可以在两个公共数据集上实现最新性能。我们的代码可在https:// github上找到。 com/tencentyouturesearch/raat。
translated by 谷歌翻译
我们提出了一个新的框架,在增强的自然语言(TANL)之间的翻译,解决了许多结构化预测语言任务,包括联合实体和关系提取,嵌套命名实体识别,关系分类,语义角色标记,事件提取,COREREFED分辨率和对话状态追踪。通过培训特定于特定于任务的鉴别分类器来说,我们将其作为一种在增强的自然语言之间的翻译任务,而不是通过培训问题,而不是解决问题,而是可以轻松提取任务相关信息。我们的方法可以匹配或优于所有任务的特定于任务特定模型,特别是在联合实体和关系提取(Conll04,Ade,NYT和ACE2005数据集)上实现了新的最先进的结果,与关系分类(偶尔和默示)和语义角色标签(Conll-2005和Conll-2012)。我们在使用相同的架构和超参数的同时为所有任务使用相同的架构和超级参数,甚至在培训单个模型时同时解决所有任务(多任务学习)。最后,我们表明,由于更好地利用标签语义,我们的框架也可以显着提高低资源制度的性能。
translated by 谷歌翻译
指定的实体识别任务是信息提取的核心任务之一。单词歧义和单词缩写是命名实体低识别率的重要原因。在本文中,我们提出了一种名为“实体识别模型WCL-BBCD”(与Bert-Bilstm-Crf-Dbpedia的单词对比学习),结合了对比度学习的概念。该模型首先在文本中训练句子对,计算句子对通过余弦的相似性中的单词对之间的相似性,以及通过相似性通过相似性来命名实体识别任务的BERT模型,以减轻单词歧义。然后,将微调的BERT模型与Bilstm-CRF模型相结合,以执行指定的实体识别任务。最后,将识别结果与先验知识(例如知识图)结合使用,以减轻单词缩写引起的低速问题的识别。实验结果表明,我们的模型在Conll-2003英语数据集和Ontonotes V5英语数据集上优于其他类似的模型方法。
translated by 谷歌翻译
事件提取(EE)是信息提取的重要任务,该任务旨在从非结构化文本中提取结构化事件信息。大多数先前的工作都专注于提取平坦的事件,同时忽略重叠或嵌套的事件。多个重叠和嵌套EE的模型包括几个连续的阶段来提取事件触发器和参数,这些阶段患有错误传播。因此,我们设计了一种简单而有效的标记方案和模型,以将EE作为单词关系识别,称为oneee。触发器或参数单词之间的关系在一个阶段同时识别出并行网格标记,从而产生非常快的事件提取速度。该模型配备了自适应事件融合模块,以生成事件感知表示表示和距离感知的预测指标,以整合单词关系识别的相对距离信息,从经验上证明这是有效的机制。对3个重叠和嵌套的EE基准测试的实验,即少数FC,GENIA11和GENIA13,表明Oneee实现了最新的(SOTA)结果。此外,ONEEE的推理速度比相同条件下的基线的推理速度快,并且由于它支持平行推断,因此可以进一步改善。
translated by 谷歌翻译