在文档级事件提取(DEE)任务中,事件参数始终散布在句子(串行问题)中,并且多个事件可能存在于一个文档(多事件问题)中。在本文中,我们认为事件参数的关系信息对于解决上述两个问题具有重要意义,并提出了一个新的DEE框架,该框架可以对关系依赖关系进行建模,称为关系授权的文档级事件提取(REDEE)。更具体地说,该框架具有一种新颖的量身定制的变压器,称为关系增强的注意变形金刚(RAAT)。 RAAT可扩展以捕获多尺度和多启动参数关系。为了进一步利用关系信息,我们介绍了一个单独的事件关系预测任务,并采用多任务学习方法来显式增强事件提取性能。广泛的实验证明了该方法的有效性,该方法可以在两个公共数据集上实现最新性能。我们的代码可在https:// github上找到。 com/tencentyouturesearch/raat。
translated by 谷歌翻译
为了减轻从头开始构建知识图(kg)的挑战,更一般的任务是使用开放式语料库中的三元组丰富一个kg,那里获得的三元组包含嘈杂的实体和关系。在保持知识代表的质量的同时,以新收获的三元组丰富一个公园,这是一项挑战。本文建议使用从附加语料库中收集的信息来完善kg的系统。为此,我们将任务制定为两个耦合子任务,即加入事件提取(JEE)和知识图融合(KGF)。然后,我们提出了一个协作知识图融合框架,以允许我们的子任务以交替的方式相互协助。更具体地说,探险家执行了由地面注释和主管提供的现有KG监督的JEE。然后,主管评估了探险家提取的三元组,并用高度排名的人来丰富KG。为了实施此评估,我们进一步提出了一种翻译的关系一致性评分机制,以对齐并将提取的三元组对齐为先前的kg。实验验证了这种合作既可以提高JEE和KGF的表现。
translated by 谷歌翻译
随着信息技术的快速发展,在线平台已经产生了巨大的文本资源。作为一种特定形式的信息提取(即),事件提取(EE)由于其自动从人类语言提取事件的能力而增加了普及。但是,事件提取有限的文献调查。现有审查工作要么花费很多努力,用于描述各种方法的细节或专注于特定领域。本研究提供了全面概述了最先进的事件提取方法及其从文本的应用程序,包括闭域和开放式事件提取。这项调查的特点是它提供了适度复杂性的概要,避免涉及特定方法的太多细节。本研究侧重于讨论代表作品的常见角色,应用领域,优势和缺点,忽略各个方法的特殊性。最后,我们总结了常见问题,当前解决方案和未来的研究方向。我们希望这项工作能够帮助研究人员和从业者获得最近的事件提取的快速概述。
translated by 谷歌翻译
文档级事件提取中有两个主要挑战:1)参数实体分散在不同的句子中,2)事件触发器通常不可用。为了解决这些挑战,最先前的研究主要关注以自回归方式建立参数链,这在培训和推论方面效率低下。与以前的研究相比,我们提出了一种快速轻量级的模型,名为PTPCG。我们设计非自动评级解码算法,以执行修剪的完整图表的事件参数组合提取,这在自动选择的伪触发器的引导下构造。与以前的系统相比,我们的系统实现了资源消耗较低的竞争结果,只需要3.6%的GPU时间(PFS-Days),推断速度快8.5倍。此外,我们的方法显示了具有(或没有)触发器的数据集的卓越兼容性,并且伪触发器可以是注释触发器的补充剂,以进一步改进。
translated by 谷歌翻译
自然语言理解的关系提取使得创新和鼓励新颖的商业概念成为可能,并促进新的数字化决策过程。目前的方法允许提取与固定数量的实体的关系作为属性。提取与任意数量的属性的关系需要复杂的系统和昂贵的关系触发注释来帮助这些系统。我们将多属性关系提取(MARE)引入具有两种方法的假设问题,促进从业务用例到数据注释的显式映射。避免精细的注释约束简化了关系提取方法的应用。评估将我们的模型与当前最先进的事件提取和二进制关系提取方法进行了比较。与普通多属性关系的提取相比,我们的方法表现出改进。
translated by 谷歌翻译
除了以实体为中心的知识之外,通常组织为知识图(千克),事件也是世界上的必不可少的知识,这触发了活动以kg(ekg)等事件为中心的知识表示形式的春天。它在许多机器学习和人工智能应用中起着越来越重要的作用,例如智能搜索,问答,推荐和文本生成。本文提供了历史,本体实例和应用视图的ekg综合调查。具体而言,要彻底地表征EKG,我们专注于其历史,定义,架构归纳,获取,相关代表图形/系统和应用程序。其中研究了发展过程和趋势。我们进一步总结了透视方向,以促进对EKG的未来研究。
translated by 谷歌翻译
跨度提取,旨在从纯文本中提取文本跨度(如单词或短语),是信息提取中的基本过程。最近的作品介绍了通过将跨度提取任务正式化为问题(QA正式化)的跨度提取任务来提高文本表示,以实现最先进的表现。然而,QA正规化并没有充分利用标签知识并遭受培训/推理的低效率。为了解决这些问题,我们介绍了一种新的范例来整合标签知识,并进一步提出一个小说模型,明确有效地将标签知识集成到文本表示中。具体而言,它独立地编码文本和标签注释,然后将标签知识集成到文本表示中,并使用精心设计的语义融合模块进行文本表示。我们在三个典型的跨度提取任务中进行广泛的实验:扁平的网,嵌套网和事件检测。实证结果表明,我们的方法在四个基准测试中实现了最先进的性能,而且分别将培训时间和推理时间降低76%和77%,与QA形式化范例相比。我们的代码和数据可在https://github.com/apkepers/lear中获得。
translated by 谷歌翻译
在视觉上丰富的文件(VRD)上的结构化文本理解是文档智能的重要组成部分。由于VRD中的内容和布局的复杂性,结构化文本理解是一项有挑战性的任务。大多数现有的研究将此问题与两个子任务结尾:实体标记和实体链接,这需要整体地了解令牌和段级别的文档的上下文。但是,很少的工作已经关注有效地从不同层次提取结构化数据的解决方案。本文提出了一个名为structext的统一框架,它对于处理两个子任务是灵活的,有效的。具体地,基于变压器,我们引入了一个段令牌对齐的编码器,以处理不同粒度水平的实体标记和实体链接任务。此外,我们设计了一种具有三个自我监督任务的新型预训练策略,以学习更丰富的代表性。 Structext使用现有屏蔽的视觉语言建模任务和新句子长度预测和配对框方向任务,以跨文本,图像和布局结合多模态信息。我们评估我们在分段级别和令牌级别的结构化文本理解的方法,并表明它优于最先进的同行,在Funsd,Srie和Ephoie数据集中具有显着优越的性能。
translated by 谷歌翻译
作为人类认知的重要组成部分,造成效果关系频繁出现在文本中,从文本策划原因关系有助于建立预测任务的因果网络。现有的因果关系提取技术包括基于知识的,统计机器学习(ML)和基于深度学习的方法。每种方法都具有其优点和缺点。例如,基于知识的方法是可以理解的,但需要广泛的手动域知识并具有较差的跨域适用性。由于自然语言处理(NLP)工具包,统计机器学习方法更加自动化。但是,功能工程是劳动密集型的,工具包可能导致错误传播。在过去的几年里,由于其强大的代表学习能力和计算资源的快速增加,深入学习技术吸引了NLP研究人员的大量关注。它们的局限包括高计算成本和缺乏足够的注释培训数据。在本文中,我们对因果关系提取进行了综合调查。我们最初介绍了因果关系提取中存在的主要形式:显式的内部管制因果关系,隐含因果关系和间情态因果关系。接下来,我们列出了代理关系提取的基准数据集和建模评估方法。然后,我们介绍了三种技术的结构化概述了与他们的代表系统。最后,我们突出了潜在的方向存在现有的开放挑战。
translated by 谷歌翻译
开放信息提取(OpenIE)促进了独立于域的大型语料库的关系事实的发现。该技术很好地适合许多开放世界的自然语言理解场景,例如自动知识基础构建,开放域问答和明确的推理。由于深度学习技术的快速发展,已经提出了许多神经开放式体系结构并取得了可观的性能。在这项调查中,我们提供了有关状态神经开放模型的广泛概述,其关键设计决策,优势和劣势。然后,我们讨论当前解决方案的局限性以及OpenIE问题本身的开放问题。最后,我们列出了最近的趋势,这些趋势可以帮助扩大其范围和适用性,从而为Openie的未来研究设定了有希望的方向。据我们所知,本文是有关此特定主题的第一篇评论。
translated by 谷歌翻译
使用诸如BERT,ELMO和FLAIR等模型建模上下文信息的成立具有显着改善了文字的表示学习。它还给出了几乎每个NLP任务机器翻译,文本摘要和命名实体识别的Sota结果,以命名为少。在这项工作中,除了使用这些主导的上下文感知的表示之外,我们还提出了一种用于命名实体识别(NER)的知识意识表示学习(KARL)网络。我们讨论了利用现有方法在纳入世界知识方面的挑战,并展示了如何利用我们所提出的方法来克服这些挑战。 KARL基于变压器编码器,该变压器编码器利用表示为事实三元组的大知识库,将它们转换为图形上下文,并提取驻留在内部的基本实体信息以生成用于特征增强的上下文化三联表示。实验结果表明,使用卡尔的增强可以大大提升我们的内部系统的性能,并在三个公共网络数据集中的文献中的现有方法,即Conll 2003,Conll ++和Ontonotes V5实现了比文献中现有方法的显着更好的结果。我们还观察到更好的概括和应用于从Karl上看不见的实体的真实环境。
translated by 谷歌翻译
学术研究是解决以前从未解决过的问题的探索活动。通过这种性质,每个学术研究工作都需要进行文献审查,以区分其Novelties尚未通过事先作品解决。在自然语言处理中,该文献综述通常在“相关工作”部分下进行。鉴于研究文件的其余部分和引用的论文列表,自动相关工作生成的任务旨在自动生成“相关工作”部分。虽然这项任务是在10年前提出的,但直到最近,它被认为是作为科学多文件摘要问题的变种。然而,即使在今天,尚未标准化了自动相关工作和引用文本生成的问题。在这项调查中,我们进行了一个元研究,从问题制定,数据集收集,方法方法,绩效评估和未来前景的角度来比较相关工作的现有文献,以便为读者洞察到国家的进步 - 最内容的研究,以及如何进行未来的研究。我们还调查了我们建议未来工作要考虑整合的相关研究领域。
translated by 谷歌翻译
时间和因果关系在确定事件之间的依赖关系方面发挥着重要作用。对事件之间的时间和因果关系进行分类有许多应用程序,例如生成事件时间表,事件摘要,文本征集和问题应答。时间和因果关系与彼此密切相关。因此,我们提出了一个联合模型,该模型包含时间和因果特征来执行因果关系分类。我们使用文本的句法结构来识别文本中的两个事件之间的时间和因果关系。我们从文本中提取语音标签序列,依赖关系标签序列和单词序列。我们提出了一个基于LSTM的模型,用于时间和因果关系分类,捕获三个编码特征之间的相互关系。对四个流行数据集的模型的评估产生了对时间和因果关系分类的有希望的结果。
translated by 谷歌翻译
我们提出了一个新的框架,在增强的自然语言(TANL)之间的翻译,解决了许多结构化预测语言任务,包括联合实体和关系提取,嵌套命名实体识别,关系分类,语义角色标记,事件提取,COREREFED分辨率和对话状态追踪。通过培训特定于特定于任务的鉴别分类器来说,我们将其作为一种在增强的自然语言之间的翻译任务,而不是通过培训问题,而不是解决问题,而是可以轻松提取任务相关信息。我们的方法可以匹配或优于所有任务的特定于任务特定模型,特别是在联合实体和关系提取(Conll04,Ade,NYT和ACE2005数据集)上实现了新的最先进的结果,与关系分类(偶尔和默示)和语义角色标签(Conll-2005和Conll-2012)。我们在使用相同的架构和超参数的同时为所有任务使用相同的架构和超级参数,甚至在培训单个模型时同时解决所有任务(多任务学习)。最后,我们表明,由于更好地利用标签语义,我们的框架也可以显着提高低资源制度的性能。
translated by 谷歌翻译
随着互联网技术的发展,信息超载现象变得越来越明显。用户需要花费大量时间来获取所需的信息。但是,汇总文档信息的关键词非常有助于用户快速获取和理解文档。对于学术资源,大多数现有研究通过标题和摘要提取关键纸张。我们发现引用中的标题信息还包含作者分配的密钥次。因此,本文使用参考信息并应用两种典型的无监督的提取方法(TF * IDF和Textrank),两个代表传统监督学习算法(NA \“IVE贝叶斯和条件随机场)和监督的深度学习模型(Bilstm- CRF),分析参考信息对关键症提取的具体性能。从扩大源文本的角度来提高关键术识别的质量。实验结果表明,参考信息可以提高精度,召回和F1自动关键肾上腺瓶在一定程度上提取。这表明了参考信息关于学术论文的关键症提取的有用性,并为以下关于自动关键正萃取的研究提供了新的想法。
translated by 谷歌翻译
在线新闻建议的一个关键挑战是帮助用户找到他们感兴趣的文章。传统新闻推荐方法通常使用单一新闻信息,这不足以编码新闻和用户表示。最近的研究使用多个频道新闻信息,例如标题,类别和机构,增强新闻和用户表示。然而,这些方法仅使用各种注意机制来熔化多视图嵌入,而不考虑上下文中包含的深度挖掘更高级别的信息。这些方法编码了在Word级别的新闻内容并共同培训了推荐网络中的注意参数,导致培训模型所需的更多Coreas。我们提出了一个事件提取的新闻推荐(EENR)框架,以克服这些缺点,利用事件提取到抽象的更高级别信息。 Eenr还使用两级策略来减少推荐网络后续部分的参数。我们在第一阶段通过外部语料库训练事件提取模块,并将训练型模型应用于新闻推荐数据集,以预测第二阶段的事件级信息,包括事件类型,角色和参数,包括事件类型,角色和参数。然后我们保险熔断多个频道信息,包括活动信息,新闻标题和类别,以编码新闻和用户。对现实世界数据集的广泛实验表明,我们的EENR方法可以有效地提高新闻建议的性能。最后,我们还探讨了利用更高抽象级别信息来替代新闻身体内容的合理性。
translated by 谷歌翻译
指定的实体识别任务是信息提取的核心任务之一。单词歧义和单词缩写是命名实体低识别率的重要原因。在本文中,我们提出了一种名为“实体识别模型WCL-BBCD”(与Bert-Bilstm-Crf-Dbpedia的单词对比学习),结合了对比度学习的概念。该模型首先在文本中训练句子对,计算句子对通过余弦的相似性中的单词对之间的相似性,以及通过相似性通过相似性来命名实体识别任务的BERT模型,以减轻单词歧义。然后,将微调的BERT模型与Bilstm-CRF模型相结合,以执行指定的实体识别任务。最后,将识别结果与先验知识(例如知识图)结合使用,以减轻单词缩写引起的低速问题的识别。实验结果表明,我们的模型在Conll-2003英语数据集和Ontonotes V5英语数据集上优于其他类似的模型方法。
translated by 谷歌翻译
当实体提到可能是不连续的,命名实体识别(ner)仍然挑战。现有方法将识别过程分解为几个顺序步骤。在培训中,他们预测金色中间结果的条件,而推理依赖于前一步的模型输出,这引入了曝光偏差。为了解决这个问题,我们首先构造每个句子的段图,其中每个节点都表示段(其自己的连续实体,或者是不连续实体的一部分),并且边缘链接属于同一实体的两个节点。节点和边缘可以分别在一个阶段中产生网格标记方案,并使用名为MAC的新颖体系结构共同学习。然后,不连续的ner可以被重新重整为发现图中的最大批变并在每个集团中连接跨度的非参数过程。三个基准测试的实验表明,我们的方法优于最先进的(SOTA)结果,在F1上提高了高达3.5个百分点,并在SOTA模型上实现了5倍的加速。
translated by 谷歌翻译
我们提出了文件的实体级关系联合模型。与其他方法形成鲜明对比 - 重点关注本地句子中的对,因此需要提及级别的注释 - 我们的模型在实体级别运行。为此,遵循多任务方法,它在Coreference分辨率上建立并通过多级别表示结合全局实体和本地提到信息来聚集相关信号。我们在积木数据集中实现最先进的关系提取结果,并报告了未来参考的第一个实体级端到端关系提取结果。最后,我们的实验结果表明,联合方法与特定于任务专用的学习相提并论,虽然由于共享参数和培训步骤而言更有效。
translated by 谷歌翻译
随着信息技术的快速发展,在线平台(例如,新闻门户网站和社交媒体)每时每刻都会产生巨大的网络信息。因此,从社会流中提取结构化的事件表现至关重要。通常,现有事件提取研究利用模式匹配,机器学习或深度学习方法来执行事件提取任务。然而,由于汉语的独特特征,中国事件提取的表现并不像英语一样好。在本文中,我们提出了一个综合框架来执行中文事件提取。所提出的方法是一个多通道输入神经框架,它集成了语义特征和语法特征。 BERT架构捕获语义特征。通过分析嵌入嵌入和图形卷积网络(GCN)分别捕获语音(POS)特征和依赖解析(DP)特征的部分。我们还在真实世界数据集中评估我们的模型。实验结果表明,该方法显着优于基准方法。
translated by 谷歌翻译