在文档级事件提取(DEE)任务中,事件参数始终散布在句子(串行问题)中,并且多个事件可能存在于一个文档(多事件问题)中。在本文中,我们认为事件参数的关系信息对于解决上述两个问题具有重要意义,并提出了一个新的DEE框架,该框架可以对关系依赖关系进行建模,称为关系授权的文档级事件提取(REDEE)。更具体地说,该框架具有一种新颖的量身定制的变压器,称为关系增强的注意变形金刚(RAAT)。 RAAT可扩展以捕获多尺度和多启动参数关系。为了进一步利用关系信息,我们介绍了一个单独的事件关系预测任务,并采用多任务学习方法来显式增强事件提取性能。广泛的实验证明了该方法的有效性,该方法可以在两个公共数据集上实现最新性能。我们的代码可在https:// github上找到。 com/tencentyouturesearch/raat。
translated by 谷歌翻译