我们将最初在多维扩展和降低多元数据的降低领域发展为功能设置。我们专注于经典缩放和ISOMAP - 在这些领域中起重要作用的原型方法 - 并在功能数据分析的背景下展示它们的使用。在此过程中,我们强调了环境公制扮演的关键作用。
translated by 谷歌翻译
概率分布之间的差异措施,通常被称为统计距离,在概率理论,统计和机器学习中普遍存在。为了在估计这些距离的距离时,对维度的诅咒,最近的工作已经提出了通过带有高斯内核的卷积在测量的分布中平滑局部不规则性。通过该框架的可扩展性至高维度,我们研究了高斯平滑$ P $ -wassersein距离$ \ mathsf {w} _p ^ {(\ sigma)} $的结构和统计行为,用于任意$ p \ GEQ 1 $。在建立$ \ mathsf {w} _p ^ {(\ sigma)} $的基本度量和拓扑属性之后,我们探索$ \ mathsf {w} _p ^ {(\ sigma)}(\ hat {\ mu} _n,\ mu)$,其中$ \ hat {\ mu} _n $是$ n $独立观察的实证分布$ \ mu $。我们证明$ \ mathsf {w} _p ^ {(\ sigma)} $享受$ n ^ { - 1/2} $的参数经验融合速率,这对比$ n ^ { - 1 / d} $率对于未平滑的$ \ mathsf {w} _p $ why $ d \ geq 3 $。我们的证明依赖于控制$ \ mathsf {w} _p ^ {(\ sigma)} $ by $ p $ th-sting spoollow sobolev restion $ \ mathsf {d} _p ^ {(\ sigma)} $并导出限制$ \ sqrt {n} \,\ mathsf {d} _p ^ {(\ sigma)}(\ hat {\ mu} _n,\ mu)$,适用于所有尺寸$ d $。作为应用程序,我们提供了使用$ \ mathsf {w} _p ^ {(\ sigma)} $的两个样本测试和最小距离估计的渐近保证,使用$ p = 2 $的实验使用$ \ mathsf {d} _2 ^ {(\ sigma)} $。
translated by 谷歌翻译
本文研究了基于Laplacian Eigenmaps(Le)的基于Laplacian EIGENMAPS(PCR-LE)的主要成分回归的统计性质,这是基于Laplacian Eigenmaps(Le)的非参数回归的方法。 PCR-LE通过投影观察到的响应的向量$ {\ bf y} =(y_1,\ ldots,y_n)$ to to changbood图表拉普拉斯的某些特征向量跨越的子空间。我们表明PCR-Le通过SoboLev空格实现了随机设计回归的最小收敛速率。在设计密度$ P $的足够平滑条件下,PCR-le达到估计的最佳速率(其中已知平方$ l ^ 2 $ norm的最佳速率为$ n ^ { - 2s /(2s + d) )} $)和健美的测试($ n ^ { - 4s /(4s + d)$)。我们还表明PCR-LE是\ EMPH {歧管Adaptive}:即,我们考虑在小型内在维度$ M $的歧管上支持设计的情况,并为PCR-LE提供更快的界限Minimax估计($ n ^ { - 2s /(2s + m)$)和测试($ n ^ { - 4s /(4s + m)$)收敛率。有趣的是,这些利率几乎总是比图形拉普拉斯特征向量的已知收敛率更快;换句话说,对于这个问题的回归估计的特征似乎更容易,统计上讲,而不是估计特征本身。我们通过经验证据支持这些理论结果。
translated by 谷歌翻译
We consider the problem of estimating a multivariate function $f_0$ of bounded variation (BV), from noisy observations $y_i = f_0(x_i) + z_i$ made at random design points $x_i \in \mathbb{R}^d$, $i=1,\ldots,n$. We study an estimator that forms the Voronoi diagram of the design points, and then solves an optimization problem that regularizes according to a certain discrete notion of total variation (TV): the sum of weighted absolute differences of parameters $\theta_i,\theta_j$ (which estimate the function values $f_0(x_i),f_0(x_j)$) at all neighboring cells $i,j$ in the Voronoi diagram. This is seen to be equivalent to a variational optimization problem that regularizes according to the usual continuum (measure-theoretic) notion of TV, once we restrict the domain to functions that are piecewise constant over the Voronoi diagram. The regression estimator under consideration hence performs (shrunken) local averaging over adaptively formed unions of Voronoi cells, and we refer to it as the Voronoigram, following the ideas in Koenker (2005), and drawing inspiration from Tukey's regressogram (Tukey, 1961). Our contributions in this paper span both the conceptual and theoretical frontiers: we discuss some of the unique properties of the Voronoigram in comparison to TV-regularized estimators that use other graph-based discretizations; we derive the asymptotic limit of the Voronoi TV functional; and we prove that the Voronoigram is minimax rate optimal (up to log factors) for estimating BV functions that are essentially bounded.
translated by 谷歌翻译
三角形流量,也称为kn \“{o}的Rosenblatt测量耦合,包括用于生成建模和密度估计的归一化流模型的重要构建块,包括诸如实值的非体积保存变换模型的流行自回归流模型(真实的NVP)。我们提出了三角形流量统计模型的统计保证和样本复杂性界限。特别是,我们建立了KN的统计一致性和kullback-leibler估算器的rospblatt的kullback-leibler估计的有限样本会聚率使用实证过程理论的工具测量耦合。我们的结果突出了三角形流动下播放功能类的各向异性几何形状,优化坐标排序,并导致雅各比比流动的统计保证。我们对合成数据进行数值实验,以说明我们理论发现的实际意义。
translated by 谷歌翻译
尽管像主组件分析一样,经典缩放是无参数的,但大多数用于嵌入多元数据的方法都需要选择一个或几个参数。由于情况的无监督性,这种调整可能很困难。我们提出了一种简单,几乎明显的方法来监督调整参数的选择:最大程度地减少压力的概念。我们通过参考刚性理论来证实这种选择。我们扩展了Aspnes等人的结果。 (IEEE移动计算,2006年),表明一般的随机几何图形是具有很高概率的三材料图。我们提供了稳定结果\ a la anderson等。 (SIAM离散数学,2010年)。我们在Shang和Ruml的MDS-MAP(P)算法的背景下说明了这种方法(IEEE Infocom,2004)。作为一种典型的补丁方法,它需要选择补丁大小,我们使用压力来使该选择数据驱动。在这种情况下,我们执行许多实验来说明使用应力作为调整参数选择的基础的有效性。这样一来,我们揭示了一个偏见差异的权衡,这是一种现象,在多维缩放文献中可能被忽略了。通过将MDS-MAP(P)变成一种流形学习方法,我们获得了ISOMAP的局部版本,为此,应力最小化也可以用于参数调整。
translated by 谷歌翻译
我们介绍了一类小说的预计方法,对实际线上的概率分布数据集进行统计分析,具有2-Wassersein指标。我们特别关注主成分分析(PCA)和回归。为了定义这些模型,我们通过将数据映射到合适的线性空间并使用度量投影运算符来限制Wassersein空间中的结果来利用与其弱利米结构密切相关的Wasserstein空间的表示。通过仔细选择切线,我们能够推出快速的经验方法,利用受约束的B样条近似。作为我们方法的副产品,我们还能够为PCA的PCA进行更快的例程来获得分布。通过仿真研究,我们将我们的方法与先前提出的方法进行比较,表明我们预计的PCA具有类似的性能,即使在拼盘下也是极其灵活的。研究了模型的若干理论性质,并证明了渐近一致性。讨论了两个真实世界应用于美国和风速预测的Covid-19死亡率。
translated by 谷歌翻译
We introduce and study a novel model-selection strategy for Bayesian learning, based on optimal transport, along with its associated predictive posterior law: the Wasserstein population barycenter of the posterior law over models. We first show how this estimator, termed Bayesian Wasserstein barycenter (BWB), arises naturally in a general, parameter-free Bayesian model-selection framework, when the considered Bayesian risk is the Wasserstein distance. Examples are given, illustrating how the BWB extends some classic parametric and non-parametric selection strategies. Furthermore, we also provide explicit conditions granting the existence and statistical consistency of the BWB, and discuss some of its general and specific properties, providing insights into its advantages compared to usual choices, such as the model average estimator. Finally, we illustrate how this estimator can be computed using the stochastic gradient descent (SGD) algorithm in Wasserstein space introduced in a companion paper arXiv:2201.04232v2 [math.OC], and provide a numerical example for experimental validation of the proposed method.
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
指数族在机器学习中广泛使用,包括连续和离散域中的许多分布(例如,通过SoftMax变换,Gaussian,Dirichlet,Poisson和分类分布)。这些家庭中的每个家庭的分布都有固定的支持。相比之下,对于有限域而言,最近在SoftMax稀疏替代方案(例如Sparsemax,$ \ alpha $ -entmax和Fusedmax)的稀疏替代方案中导致了带有不同支持的分布。本文基于几种技术贡献,开发了连续分布的稀疏替代方案:首先,我们定义了$ \ omega $ regultion的预测图和任意域的Fenchel-young损失(可能是无限或连续的)。对于线性参数化的家族,我们表明,Fenchel-Young损失的最小化等效于统计的矩匹配,从而概括了指数家族的基本特性。当$ \ omega $是带有参数$ \ alpha $的Tsallis negentropy时,我们将获得````trabormed rompential指数)'',其中包括$ \ alpha $ -entmax和sparsemax和sparsemax($ \ alpha = 2 $)。对于二次能量函数,产生的密度为$ \ beta $ -Gaussians,椭圆形分布的实例,其中包含特殊情况,即高斯,双重量级,三人级和epanechnikov密度,我们为差异而得出了差异的封闭式表达式, Tsallis熵和Fenchel-Young损失。当$ \ Omega $是总变化或Sobolev正常化程序时,我们将获得Fusedmax的连续版本。最后,我们引入了连续的注意机制,从\ {1、4/3、3/3、3/2、2 \} $中得出有效的梯度反向传播算法。使用这些算法,我们证明了我们的稀疏连续分布,用于基于注意力的音频分类和视觉问题回答,表明它们允许参加时间间隔和紧凑区域。
translated by 谷歌翻译
对于高维和非参数统计模型,速率最优估计器平衡平方偏差和方差是一种常见的现象。虽然这种平衡被广泛观察到,但很少知道是否存在可以避免偏差和方差之间的权衡的方法。我们提出了一般的策略,以获得对任何估计方差的下限,偏差小于预先限定的界限。这表明偏差差异折衷的程度是不可避免的,并且允许量化不服从其的方法的性能损失。该方法基于许多抽象的下限,用于涉及关于不同概率措施的预期变化以及诸如Kullback-Leibler或Chi-Sque-diversence的信息措施的变化。其中一些不平等依赖于信息矩阵的新概念。在该物品的第二部分中,将抽象的下限应用于几种统计模型,包括高斯白噪声模型,边界估计问题,高斯序列模型和高维线性回归模型。对于这些特定的统计应用,发生不同类型的偏差差异发生,其实力变化很大。对于高斯白噪声模型中集成平方偏置和集成方差之间的权衡,我们将较低界限的一般策略与减少技术相结合。这允许我们将原始问题与估计的估计器中的偏差折衷联动,以更简单的统计模型中具有额外的对称性属性。在高斯序列模型中,发生偏差差异的不同相位转换。虽然偏差和方差之间存在非平凡的相互作用,但是平方偏差的速率和方差不必平衡以实现最小估计速率。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
广义贝叶斯推理使用损失函数而不是可能性的先前信仰更新,因此可以用于赋予鲁棒性,以防止可能的错误规范的可能性。在这里,我们认为广泛化的贝叶斯推论斯坦坦差异作为损失函数的损失,由应用程序的可能性含有难治性归一化常数。在这种情况下,斯坦因差异来避免归一化恒定的评估,并产生封闭形式或使用标准马尔可夫链蒙特卡罗的通用后出版物。在理论层面上,我们显示了一致性,渐近的正常性和偏见 - 稳健性,突出了这些物业如何受到斯坦因差异的选择。然后,我们提供关于一系列棘手分布的数值实验,包括基于内核的指数家庭模型和非高斯图形模型的应用。
translated by 谷歌翻译
In this work we study statistical properties of graph-based algorithms for multi-manifold clustering (MMC). In MMC the goal is to retrieve the multi-manifold structure underlying a given Euclidean data set when this one is assumed to be obtained by sampling a distribution on a union of manifolds $\mathcal{M} = \mathcal{M}_1 \cup\dots \cup \mathcal{M}_N$ that may intersect with each other and that may have different dimensions. We investigate sufficient conditions that similarity graphs on data sets must satisfy in order for their corresponding graph Laplacians to capture the right geometric information to solve the MMC problem. Precisely, we provide high probability error bounds for the spectral approximation of a tensorized Laplacian on $\mathcal{M}$ with a suitable graph Laplacian built from the observations; the recovered tensorized Laplacian contains all geometric information of all the individual underlying manifolds. We provide an example of a family of similarity graphs, which we call annular proximity graphs with angle constraints, satisfying these sufficient conditions. We contrast our family of graphs with other constructions in the literature based on the alignment of tangent planes. Extensive numerical experiments expand the insights that our theory provides on the MMC problem.
translated by 谷歌翻译
我们考虑了一个通用的非线性模型,其中信号是未知(可能增加的,可能增加的特征数量)的有限混合物,该特征是由由真实非线性参数参数化的连续字典发出的。在连续或离散设置中使用高斯(可能相关)噪声观察信号。我们提出了一种网格优化方法,即一种不使用参数空间上任何离散化方案的方法来估计特征的非线性参数和混合物的线性参数。我们使用有关离网方法的几何形状的最新结果,在真实的基础非线性参数上给出最小的分离,以便可以构建插值证书函数。还使用尾部界限,用于高斯过程的上流,我们将预测误差限制为高概率。假设可以构建证书函数,我们的预测误差绑定到日志 - 因线性回归模型中LASSO预测器所达到的速率类似。我们还建立了收敛速率,以高概率量化线性和非线性参数的估计质量。
translated by 谷歌翻译
Network data are ubiquitous in modern machine learning, with tasks of interest including node classification, node clustering and link prediction. A frequent approach begins by learning an Euclidean embedding of the network, to which algorithms developed for vector-valued data are applied. For large networks, embeddings are learned using stochastic gradient methods where the sub-sampling scheme can be freely chosen. Despite the strong empirical performance of such methods, they are not well understood theoretically. Our work encapsulates representation methods using a subsampling approach, such as node2vec, into a single unifying framework. We prove, under the assumption that the graph is exchangeable, that the distribution of the learned embedding vectors asymptotically decouples. Moreover, we characterize the asymptotic distribution and provided rates of convergence, in terms of the latent parameters, which includes the choice of loss function and the embedding dimension. This provides a theoretical foundation to understand what the embedding vectors represent and how well these methods perform on downstream tasks. Notably, we observe that typically used loss functions may lead to shortcomings, such as a lack of Fisher consistency.
translated by 谷歌翻译
在1970年代的两个重要非参数方法中出现了群集的:级别集或群集树,由Hartigan提出的级别树木,并通过福卢加和旅馆提出的梯度线或渐变流的聚类。在最近的一篇论文中,我们认为这两种方法的目的是根本值的,通过表明梯度流提供了沿着簇树移动的方法。在制作更强大的情况下,我们面临的事实是群集树没有定义底层密度的整个支持的分区,而梯度流动。在本文中,我们通过提出从群集树中获取分区的两种方法来解决这一难题 - 其中一个人在其自己的右侧非常自然 - 并且显示它们两者都减少到梯度流给出的分区根据对采样密度的标准假设。
translated by 谷歌翻译
内核Stein差异(KSD)是一种基于内核的广泛使用概率指标之间差异的非参数量度。它通常在用户从候选概率度量中收集的样本集合的情况下使用,并希望将它们与指定的目标概率度量进行比较。 KSD的一个有用属性是,它可以仅从候选度量的样本中计算出来,并且不知道目标度量的正常化常数。 KSD已用于一系列设置,包括合适的测试,参数推断,MCMC输出评估和生成建模。当前KSD方法论的两个主要问题是(i)超出有限维度欧几里得环境之外的适用性以及(ii)缺乏影响KSD性能的清晰度。本文提供了KSD的新频谱表示,这两种补救措施都使KSD适用于希尔伯特(Hilbert)评估数据,并揭示了内核和Stein oterator Choice对KSD的影响。我们通过在许多合成数据实验中对各种高斯和非高斯功能模型进行拟合优度测试来证明所提出的方法的功效。
translated by 谷歌翻译
We consider the problem of estimating the optimal transport map between a (fixed) source distribution $P$ and an unknown target distribution $Q$, based on samples from $Q$. The estimation of such optimal transport maps has become increasingly relevant in modern statistical applications, such as generative modeling. At present, estimation rates are only known in a few settings (e.g. when $P$ and $Q$ have densities bounded above and below and when the transport map lies in a H\"older class), which are often not reflected in practice. We present a unified methodology for obtaining rates of estimation of optimal transport maps in general function spaces. Our assumptions are significantly weaker than those appearing in the literature: we require only that the source measure $P$ satisfies a Poincar\'e inequality and that the optimal map be the gradient of a smooth convex function that lies in a space whose metric entropy can be controlled. As a special case, we recover known estimation rates for bounded densities and H\"older transport maps, but also obtain nearly sharp results in many settings not covered by prior work. For example, we provide the first statistical rates of estimation when $P$ is the normal distribution and the transport map is given by an infinite-width shallow neural network.
translated by 谷歌翻译