In this paper, we explore the use of metric learning to embed Windows PE files in a low-dimensional vector space for downstream use in a variety of applications, including malware detection, family classification, and malware attribute tagging. Specifically, we enrich labeling on malicious and benign PE files using computationally expensive, disassembly-based malicious capabilities. Using these capabilities, we derive several different types of metric embeddings utilizing an embedding neural network trained via contrastive loss, Spearman rank correlation, and combinations thereof. We then examine performance on a variety of transfer tasks performed on the EMBER and SOREL datasets, demonstrating that for several tasks, low-dimensional, computationally efficient metric embeddings maintain performance with little decay, which offers the potential to quickly retrain for a variety of transfer tasks at significantly reduced storage overhead. We conclude with an examination of practical considerations for the use of our proposed embedding approach, such as robustness to adversarial evasion and introduction of task-specific auxiliary objectives to improve performance on mission critical tasks.
translated by 谷歌翻译
In this paper, we assess the viability of transformer models in end-to-end InfoSec settings, in which no intermediate feature representations or processing steps occur outside the model. We implement transformer models for two distinct InfoSec data formats - specifically URLs and PE files - in a novel end-to-end approach, and explore a variety of architectural designs, training regimes, and experimental settings to determine the ingredients necessary for performant detection models. We show that in contrast to conventional transformers trained on more standard NLP-related tasks, our URL transformer model requires a different training approach to reach high performance levels. Specifically, we show that 1) pre-training on a massive corpus of unlabeled URL data for an auto-regressive task does not readily transfer to binary classification of malicious or benign URLs, but 2) that using an auxiliary auto-regressive loss improves performance when training from scratch. We introduce a method for mixed objective optimization, which dynamically balances contributions from both loss terms so that neither one of them dominates. We show that this method yields quantitative evaluation metrics comparable to that of several top-performing benchmark classifiers. Unlike URLs, binary executables contain longer and more distributed sequences of information-rich bytes. To accommodate such lengthy byte sequences, we introduce additional context length into the transformer by providing its self-attention layers with an adaptive span similar to Sukhbaatar et al. We demonstrate that this approach performs comparably to well-established malware detection models on benchmark PE file datasets, but also point out the need for further exploration into model improvements in scalability and compute efficiency.
translated by 谷歌翻译
恶意软件检测在网络安全中起着至关重要的作用,随着恶意软件增长的增加和网络攻击的进步。以前看不见的恶意软件不是由安全供应商确定的,这些恶意软件通常在这些攻击中使用,并且不可避免地要找到可以从未标记的样本数据中自学习的解决方案。本文介绍了Sherlock,这是一种基于自学的深度学习模型,可根据视觉变压器(VIT)体系结构检测恶意软件。 Sherlock是一种新颖的恶意软件检测方法,它可以通过使用基于图像的二进制表示形式来学习独特的功能,以区分恶意软件和良性程序。在47种类型和696个家庭的层次结构中使用120万个Android应用的实验结果表明,自我监督的学习可以达到97%的恶意软件分类,而恶意软件的二进制分类比现有的最新技术更高。我们提出的模型还能够胜过针对多级恶意软件类型和家庭的最先进技术,分别为.497和.491。
translated by 谷歌翻译
恶意软件是跨越多个操作系统和各种文件格式的计算机的最损害威胁之一。为了防止不断增长的恶意软件的威胁,已经提出了巨大的努力来提出各种恶意软件检测方法,试图有效和有效地检测恶意软件。最近的研究表明,一方面,现有的ML和DL能够卓越地检测新出现和以前看不见的恶意软件。然而,另一方面,ML和DL模型本质上易于侵犯对抗性示例形式的对抗性攻击,这通过略微仔细地扰乱了合法输入来混淆目标模型来恶意地产生。基本上,在计算机视觉领域最初广泛地研究了对抗性攻击,并且一些快速扩展到其他域,包括NLP,语音识别甚至恶意软件检测。在本文中,我们专注于Windows操作系统系列中的便携式可执行文件(PE)文件格式的恶意软件,即Windows PE恶意软件,作为在这种对抗设置中研究对抗性攻击方法的代表性案例。具体而言,我们首先首先概述基于ML / DL的Windows PE恶意软件检测的一般学习框架,随后突出了在PE恶意软件的上下文中执行对抗性攻击的三个独特挑战。然后,我们进行全面和系统的审查,以对PE恶意软件检测以及增加PE恶意软件检测的稳健性的相应防御,对近最新的对手攻击进行分类。我们首先向Windows PE恶意软件检测的其他相关攻击结束除了对抗对抗攻击之外,然后对未来的研究方向和机遇脱落。
translated by 谷歌翻译
我们考虑通过网络攻击者生成对抗性恶意软件的问题,其中攻击者的任务是在现有二进制恶意软件文件中战略性地修改某些字节,以便修改的文件能够避免恶意软件检测器,例如基于机器学习的恶意软件分类器。我们使用从单个公开可用的恶意软件数据集绘制的二进制恶意软件样本进行了评估了三个最近的对抗恶意软件生成技术,并将其进行了比较了它们的性能,以逃避称为MALCONV的基于机器学习的恶意软件分类器。我们的结果表明,在比较技术中,最有效的技术是战略性地修改二进制标题中字节的技术。我们通过讨论对对抗对抗恶意软件生成主题的经验教训和未来的研究方向来结束。
translated by 谷歌翻译
深度神经网络(DNN)越来越多地应用于恶意软件检测中,其鲁棒性已广泛争论。传统上,对抗性示例生成方案依赖于详细的模型信息(基于梯度的方法)或许多样本来训练替代模型,在大多数情况下都无法使用。我们提出了基于实例的攻击的概念。我们的方案是可解释的,可以在黑箱环境中起作用。给定一个特定的二进制示例和恶意软件分类器,我们使用数据增强策略来生成足够的数据,我们可以从中训练一个简单的可解释模型。我们通过显示特定二进制的不同部分的重量来解释检测模型。通过分析解释,我们发现数据小节在Windows PE恶意软件检测中起重要作用。我们提出了一个新函数,以保存可以应用于数据子分校的转换算法。通过采用我们提出的二进制多样化技术,我们消除了最加权零件对产生对抗性例子的影响。在某些情况下,我们的算法可以欺骗DNN,成功率接近100 \%。我们的方法的表现优于最新方法。最重要的方面是我们的方法在黑框设置中运行,并且可以通过域知识来验证结果。我们的分析模型可以帮助人们改善恶意软件探测器的鲁棒性。
translated by 谷歌翻译
可提供许多开源和商业恶意软件探测器。然而,这些工具的功效受到新的对抗性攻击的威胁,由此恶意软件试图使用例如机器学习技术来逃避检测。在这项工作中,我们设计了依赖于特征空间和问题空间操纵的对抗逃避攻击。它使用可扩展性导向特征选择来最大限度地通过识别影响检测的最关键的特征来最大限度地逃避。然后,我们将此攻击用作评估若干最先进的恶意软件探测器的基准。我们发现(i)最先进的恶意软件探测器容易受到简单的逃避策略,并且可以使用现成的技术轻松欺骗; (ii)特征空间操纵和问题空间混淆可以组合起来,以便在不需要对探测器的白色盒子理解的情况下实现逃避; (iii)我们可以使用解释性方法(例如,Shap)来指导特征操纵并解释攻击如何跨多个检测器传输。我们的调查结果阐明了当前恶意软件探测器的弱点,以及如何改善它们。
translated by 谷歌翻译
Strengthening the robustness of machine learning-based Android malware detectors in the real world requires incorporating realizable adversarial examples (RealAEs), i.e., AEs that satisfy the domain constraints of Android malware. However, existing work focuses on generating RealAEs in the problem space, which is known to be time-consuming and impractical for adversarial training. In this paper, we propose to generate RealAEs in the feature space, leading to a simpler and more efficient solution. Our approach is driven by a novel interpretation of Android malware properties in the feature space. More concretely, we extract feature-space domain constraints by learning meaningful feature dependencies from data and applying them by constructing a robust feature space. Our experiments on DREBIN, a well-known Android malware detector, demonstrate that our approach outperforms the state-of-the-art defense, Sec-SVM, against realistic gradient- and query-based attacks. Additionally, we demonstrate that generating feature-space RealAEs is faster than generating problem-space RealAEs, indicating its high applicability in adversarial training. We further validate the ability of our learned feature-space domain constraints in representing the Android malware properties by showing that (i) re-training detectors with our feature-space RealAEs largely improves model performance on similar problem-space RealAEs and (ii) using our feature-space domain constraints can help distinguish RealAEs from unrealizable AEs (unRealAEs).
translated by 谷歌翻译
恶意软件(恶意软件)分类为持续学习(CL)制度提供了独特的挑战,这是由于每天收到的新样本的数量以及恶意软件的发展以利用新漏洞。在典型的一天中,防病毒供应商将获得数十万个独特的软件,包括恶意和良性,并且在恶意软件分类器的一生中,有超过十亿个样品很容易积累。鉴于问题的规模,使用持续学习技术的顺序培训可以在减少培训和存储开销方面提供可观的好处。但是,迄今为止,还没有对CL应用于恶意软件分类任务的探索。在本文中,我们研究了11种应用于三个恶意软件任务的CL技术,涵盖了常见的增量学习方案,包括任务,类和域增量学习(IL)。具体而言,使用两个现实的大规模恶意软件数据集,我们评估了CL方法在二进制恶意软件分类(domain-il)和多类恶意软件家庭分类(Task-IL和类IL)任务上的性能。令我们惊讶的是,在几乎所有情况下,持续的学习方法显着不足以使训练数据的幼稚关节重播 - 在某些情况下,将精度降低了70个百分点以上。与关节重播相比,有选择性重播20%的存储数据的一种简单方法可以实现更好的性能,占训练时间的50%。最后,我们讨论了CL技术表现出乎意料差的潜在原因,希望它激发进一步研究在恶意软件分类域中更有效的技术。
translated by 谷歌翻译
恶意软件家庭分类是具有公共安全的重要问题,并通过专家标签的高成本受到阻碍的重要问题。绝大多数公司使用嘈杂的标签方法,阻碍了结果的定量量化和更深的相互作用。为了提供进一步前进所需的数据,我们创建了恶意软件开源威胁情报族(图案)数据集。 MOTIF包含来自454个家庭的3,095个恶意软件样本,使其成为最大,最多样化的公共恶意软件数据集,迄今为止,比以前的Windows恶意软件语料库大于任何先前的专家标记的语料库,近3倍。 MOTIF还附带了从恶意软件样本到威胁报告的映射,以信誉良好的行业来源发布,这两者都验证了标签,并打开了将不透明的恶意软件样本连接到人类可读描述的新的研究机会。这使得重要的评估通常是不可行的,由于行业的非标准化报告。例如,我们提供用于描述相同恶意软件系列的不同名称的别名,允许我们在从不同源获得名称时,为您的第一次准确性进行基准测试。使用MOTIF数据集获得的评估结果表明现有任务具有重要的改进空间,抗病毒多数投票的准确性仅以62.10%和众所周知的高度精度测量。我们的调查结果表明,由于在所考虑的样品中可能无法清楚的类别,因此,恶意软件家庭分类与大多数ML文献中的研究不同的标记噪声遭受任何类型的标记噪声。
translated by 谷歌翻译
恶意软件开发人员使用诸如压缩,加密和混淆等技术的组合来绕过反病毒软件。使用抗分析技术的恶意软件可以绕过基于AI的防病毒软件和恶意软件分析工具。因此,对包装文件进行分类是最大的挑战之一。如果恶意软件分类器学习包装工的功能,而不是恶意软件的功能,就会出现问题。用意外错误的数据训练模型变成中毒攻击,对抗攻击和逃避攻击。因此,研究人员应考虑包装以构建适当的恶意软件分类器模型。在本文中,我们提出了一个多步框架,用于分类和识别包装样本,其中包括伪最佳的功能选择,基于机器学习的分类器和Packer识别步骤。在第一步中,我们使用购物车算法和置换重要性来预选重要的20个功能。在第二步中,每个模型都会学习20个预选功能,以分类具有最高性能的包装文件。结果,XGBoost以置换重要性了解了XGBoost预先选择的功能,其精度为99.67%,F1得分为99.46%,并且在曲线下的F1分数表现出最高的性能(f1)。 AUC)为99.98%。在第三步中,我们提出了一种新方法,该方法只能识别包装工,仅针对被分类为众所周知的包装的样品。
translated by 谷歌翻译
随着深度神经网络(DNNS)的进步在许多关键应用中表现出前所未有的性能水平,它们的攻击脆弱性仍然是一个悬而未决的问题。我们考虑在测试时间进行逃避攻击,以防止在受约束的环境中进行深入学习,其中需要满足特征之间的依赖性。这些情况可能自然出现在表格数据中,也可能是特定应用程序域中功能工程的结果,例如网络安全中的威胁检测。我们提出了一个普通的基于迭代梯度的框架,称为围栏,用于制定逃避攻击,考虑到约束域和应用要求的细节。我们将其应用于针对两个网络安全应用培训的前馈神经网络:网络流量僵尸网络分类和恶意域分类,以生成可行的对抗性示例。我们广泛评估了攻击的成功率和绩效,比较它们对几个基线的改进,并分析影响攻击成功率的因素,包括优化目标和数据失衡。我们表明,通过最少的努力(例如,生成12个其他网络连接),攻击者可以将模型的预测从恶意类更改为良性并逃避分类器。我们表明,在具有更高失衡的数据集上训练的模型更容易受到我们的围栏攻击。最后,我们证明了在受限领域进行对抗训练的潜力,以提高针对这些逃避攻击的模型弹性。
translated by 谷歌翻译
恶意应用程序(尤其是针对Android平台的应用程序)对开发人员和最终用户构成了严重威胁。许多研究工作都致力于开发有效的方法来防御Android恶意软件。但是,鉴于Android恶意软件的爆炸性增长以及恶意逃避技术(如混淆和反思)的持续发展,基于手动规则或传统机器学习的Android恶意软件防御方法可能无效。近年来,具有强大功能抽象能力的主要研究领域称为“深度学习”(DL),在各个领域表现出了令人信服和有希望的表现,例如自然语言处理和计算机视觉。为此,采用深度学习技术来阻止Android恶意软件攻击,最近引起了广泛的研究关注。然而,没有系统的文献综述着重于针对Android恶意软件防御的深度学习方法。在本文中,我们进行了系统的文献综述,以搜索和分析在Android环境中恶意软件防御的背景下采用了如何应用的。结果,确定了涵盖2014 - 2021年期间的132项研究。我们的调查表明,尽管大多数这些来源主要考虑基于Android恶意软件检测的基于DL,但基于其他方案的53项主要研究(40.1%)设计防御方法。这篇综述还讨论了基于DL的Android恶意软件防御措施中的研究趋势,研究重点,挑战和未来的研究方向。
translated by 谷歌翻译
反向工程师受益于二进制中的标识符(例如函数名称)的存在,但通常将其删除以释放。训练机器学习模型自动预测功能名称是有希望的,但从根本上讲很难:与自然语言中的单词不同,大多数函数名称仅出现一次。在本文中,我们通过引入极端功能标签(XFL)来解决此问题,这是一种极端的多标签学习方法,可为二进制功能选择适当的标签。 XFL将函数名称分为代币,将每个功能视为具有自然语言标记文本的问题的信息标签。我们将二进制代码的语义与通过dexter进行标签,这是一种新颖的函数,将基于静态分析的特征与来自呼叫图的本地上下文和整个二进制的全局上下文相结合。我们证明,XFL/Dexter在Debian Project的10,047个二进制数据集上的功能标签上优于最新技术,获得了83.5%的精度。我们还研究了XFL与文献中的替代二进制嵌入的组合,并表明Dexter始终为这项任务做得最好。结果,我们证明了二进制函数标记可以通过多标签学习有效地措辞,并且二进制函数嵌入得益于包括明确的语义特征。
translated by 谷歌翻译
我们研究了如何修改可执行文件以欺骗恶意软件分类系统。这项工作的主要贡献是一种方法,可以随机注入恶意软件文件,并将其用作攻击以降低分类准确性,也可以作为防御方法,从而增加可用于培训的数据。它尊重操作系统文件格式,以确保在注射后仍将执行恶意软件,并且不会改变其行为。我们重现了五种最先进的恶意软件分类方法来评估我们的注射方案:一种基于GIST+KNN,三个CNN变体和一种封闭式CNN。我们在公共数据集上进行了实验,其中有25个不同家庭的9,339个恶意软件样本。我们的结果表明,恶意软件的大小增加了7%,导致恶意软件家庭分类的准确度下降了25%至40%。他们表明,自动恶意软件分类系统可能不像文献中最初报道的那样值得信赖。我们还使用修改后的麦芽脂肪剂以及原始恶核评估,以提高网络的鲁棒性,以防止上述攻击。结果表明,重新排序恶意软件部分和注入随机数据的组合可以改善分类的整体性能。代码可在https://github.com/adeilsonsilva/malware-injection中找到。
translated by 谷歌翻译
In security-sensitive applications, the success of machine learning depends on a thorough vetting of their resistance to adversarial data. In one pertinent, well-motivated attack scenario, an adversary may attempt to evade a deployed system at test time by carefully manipulating attack samples. In this work, we present a simple but effective gradientbased approach that can be exploited to systematically assess the security of several, widely-used classification algorithms against evasion attacks. Following a recently proposed framework for security evaluation, we simulate attack scenarios that exhibit different risk levels for the classifier by increasing the attacker's knowledge of the system and her ability to manipulate attack samples. This gives the classifier designer a better picture of the classifier performance under evasion attacks, and allows him to perform a more informed model selection (or parameter setting). We evaluate our approach on the relevant security task of malware detection in PDF files, and show that such systems can be easily evaded. We also sketch some countermeasures suggested by our analysis.
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
安全字段中的数据标签通常是嘈杂,有限或偏向于人口子集的。结果,诸如准确性,精度和召回指标之类的普遍评估方法,或从标记数据集中计算的性能曲线的分析对机器学习(ML)模型的现实性能没有足够的信心。这减慢了该领域的机器学习的采用。在当今的行业中,我们依靠域专业知识和冗长的手动评估来建立此信心,然后再运送新的安全应用程序模型。在本文中,我们介绍了Firenze,这是一种使用域专业知识对ML模型的性能进行比较评估的新型框架,并编码为称为标记的可扩展功能。我们表明,在称为感兴趣的区域的样本中计算和组合的标记可以提供对其现实世界表演的强大估计。至关重要的是,我们使用统计假设检验来确保观察到的差异,因此从我们的框架中得出的结论 - 比仅噪声可观察到的更为突出。使用模拟和两个现实世界数据集用于恶意软件和域名声誉检测,我们说明了方法的有效性,局限性和见解。综上所述,我们建议Firenze作为研究人员,领域专家和企业主混合团队的快速,可解释和协作模型开发和评估的资源。
translated by 谷歌翻译
在对抗机器学习中,防止对深度学习系统的攻击的新防御能力在释放更强大的攻击后不久就会破坏。在这种情况下,法医工具可以通过追溯成功的根本原因来为现有防御措施提供宝贵的补充,并为缓解措施提供前进的途径,以防止将来采取类似的攻击。在本文中,我们描述了我们为开发用于深度神经网络毒物攻击的法医追溯工具的努力。我们提出了一种新型的迭代聚类和修剪解决方案,该解决方案修剪了“无辜”训练样本,直到所有剩余的是一组造成攻击的中毒数据。我们的方法群群训练样本基于它们对模型参数的影响,然后使用有效的数据解读方法来修剪无辜簇。我们从经验上证明了系统对三种类型的肮脏标签(后门)毒物攻击和三种类型的清洁标签毒药攻击的功效,这些毒物跨越了计算机视觉和恶意软件分类。我们的系统在所有攻击中都达到了98.4%的精度和96.8%的召回。我们还表明,我们的系统与专门攻击它的四种抗纤维法措施相对强大。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译