事后观察合理性是一种玩一般游戏的方法,该游戏规定了针对一组偏差的单个代理的无重格学习动态,并进一步描述了具有介导的平衡的多个代理商之间的共同理性行为。为了在依次的决策设置中发展事后理性学习,我们将行为偏差形式化为一般偏差,尊重广泛形式游戏的结构。将时间选择的概念整合到反事实遗憾的最小化(CFR)中,我们介绍了广泛的遗憾最小化(EFR)算法,该算法对于任何给定的行为偏差都具有与集合的复杂性紧密相关的计算相关的行为偏差。我们识别行为偏差子集,部分序列偏差类型,这些类型还包含先前研究的类型并导致长度中等的游戏中有效的EFR实例。此外,我们对基准游戏中不同偏差类型实例化的EFR进行了彻底的经验分析,我们发现更强大的类型通常会引起更好的性能。
translated by 谷歌翻译
在最近在两人,零和游戏中取得成功的驱动下,人工智能在游戏中的工作越来越重视产生基于平衡策略的算法。但是,这种方法在培养通用游戏或两个以上玩家的能力的玩家中的效果较小,而不是在两人游戏中的零和零游戏中。一个有吸引力的替代方法是考虑自适应算法,以确保相对于修改行为可以实现的方面的强劲表现。这种方法还导致了游戏理论分析,但是在关节学习动力学而不是均衡的代理行为引起的相关性游戏中。我们在一般的顺序决策环境中发展并倡导这一对学习的事后理性理性框架。为此,我们在广泛的游戏中重新检查了介导的平衡和偏差类型,从而获得了更完整的理解和解决过去的误解。我们提出了一组示例,说明了文献中每种平衡的独特优势和劣势,并证明没有可牵引的概念可以包含所有其他概念。这一探究线在与反事实遗憾最小化(CFR)家族中算法相对应的偏差和平衡类的定义中达到顶点,将它们与文献中的所有其他人联系起来。更详细地研究CFR进一步导致相关游戏中合理性的新递归定义,该定义以自然适用于后代评估的方式扩展了顺序合理性。
translated by 谷歌翻译
我们介绍了钢筋学习的部分可观察的历史过程(POHP)形式主义。PoHP中心周围的单一代理的行动和观察以及摘要其他玩家的存在,而不将它们减少到随机过程中。我们的形式主义提供了一种简化的界面,用于设计算法,用于独家单个或多代理的分类,以及用于在这些域中应用的发展理论。我们展示了PoHP形式主义如何统一传统模型,包括马尔可夫决策过程,马尔可夫游戏,广泛的形式游戏和他们的部分可观察到的扩展,而不会引入繁琐的技术机械或违反加固学习的哲学支撑。我们通过简明地探索可观察的连续合理性,重新导出广泛形式的遗憾最小化(EFR)算法,并检查EFR在更大的理论特性的情况下进行广泛的形式的效用。
translated by 谷歌翻译
在正常游戏中,简单,未耦合的无regret动态与相关的平衡是多代理系统理论的著名结果。具体而言,已知20多年来,当所有玩家都试图在重复的正常游戏中最大程度地减少其内部遗憾时,游戏的经验频率会收敛于正常形式相关的平衡。广泛的形式(即树形)游戏通过对顺序和同时移动以及私人信息进行建模,从而推广正常形式的游戏。由于游戏中部分信息的顺序性质和存在,因此广泛的形式相关性具有与正常形式的属性明显不同,而正常形式的相关性仍然是开放的研究方向。已经提出了广泛的形式相关平衡(EFCE)作为自然的广泛形式与正常形式相关平衡。但是,目前尚不清楚EFCE是否是由于未耦合的代理动力学而出现的。在本文中,我们给出了第一个未耦合的无regret动态,该动态将$ n $ n $ - 玩家的General-sum大型游戏收敛于EFCE,并带有完美的回忆。首先,我们在广泛的游戏中介绍了触发遗憾的概念,这扩展了正常游戏中的内部遗憾。当每个玩家的触发后悔低时,游戏的经验频率接近EFCE。然后,我们给出有效的无触发式算法。我们的算法在每个决策点在每个决策点上都会从每个决策点构建播放器的全球策略,从而将触发遗憾分解为本地子问题。
translated by 谷歌翻译
游戏历史悠久的历史悠久地作为人工智能进步的基准。最近,使用搜索和学习的方法在一系列完美的信息游戏中表现出强烈的表现,并且使用游戏理论推理和学习的方法对特定的不完美信息扑克变体表示了很强的性能。我们介绍游戏玩家,一个通用算法,统一以前的方法,结合导游搜索,自助学习和游戏理论推理。游戏播放器是实现大型完美和不完美信息游戏中强大实证性能的第一个算法 - 这是一项真正的任意环境算法的重要一步。我们证明了游戏玩家是声音,融合到完美的游戏,因为可用的计算时间和近似容量增加。游戏播放器在国际象棋上达到了强大的表现,然后击败了最强大的公开可用的代理商,在头上没有限制德克萨斯州扑克(Slumbot),击败了苏格兰院子的最先进的代理人,这是一个不完美的信息游戏,说明了引导搜索,学习和游戏理论推理的价值。
translated by 谷歌翻译
\ emph {ex ante}相关性正在成为\ emph {顺序对抗团队游戏}的主流方法,其中一组球员在零和游戏中面对另一支球队。众所周知,团队成员的不对称信息同时使平衡计算\ textsf {apx} - hard和团队的策略在游戏树上不可直接表示。后一个问题阻止采用成功的2个玩家零和游戏的成功工具,例如,\ emph {e.g。},抽象,无regret学习和子游戏求解。这项工作表明,我们可以通过弥合顺序对抗团队游戏和2次玩家游戏之间的差距来恢复这种弱点。特别是,我们提出了一种新的,合适的游戏表示形式,我们称之为\ emph {Team-Public-information},其中团队被代表为单个协调员,他只知道整个团队的共同信息,并向每个成员开出一个行动对于任何可能的私人状态。最终的表示形式是高度\ emph {可解释},是一棵2播放器树,在设计抽象时,团队的策略具有直接解释和更具表现力的行为,并且具有更高的表现力。此外,我们证明了代表性的回报等效性,并提供了直接从广泛形式开始的技术,从而在没有信息损失的情况下产生了更紧凑的表示形式。最后,我们在应用于标准测试床上的技术时对技术进行了实验评估,并将它们的性能与当前的最新状态进行了比较。
translated by 谷歌翻译
在本文中,我们建立了高效且取消耦合的学习动力学,因此,当由所有玩家在多人游戏中使用Perfect-Recall Inderfect Interfect Inderfection Formfortation Gartensive Games时,每个玩家的\ emph {触发后悔}会成长为$ o(\ log t t t t t t )$ $ t $重复播放。这比$ o(t^{1/4})$的先前最著名的触发regret键呈指数改进,并解决了Bai等人最近的一个开放问题。 (2022)。作为直接的结果,我们保证以$ \ frac {\ log log t} {t} $的接近速率以接近{粗相关的平衡}融合。基于先前的工作,我们的构造核心是关于从\ emph {polyenmial genter}衍生的固定点的更一般的结果,这是我们为\ emph {(粗)触发偏差函数建立的属性}。此外,我们的构造利用了凸壳的精制\ textit {遗憾电路},与先验保证不同 - 保留了Syrgkanis等人引入的\ emph {rvu属性}。 (NIPS,2015年);这种观察对基于CFR型遗憾的分解,在学习动态下建立近乎最佳的遗憾具有独立的兴趣。
translated by 谷歌翻译
在不完美的信息游戏中最近的最近结果仅适用于,或评估,扑克和扑克和扑克等游戏,如骗子的骰子。我们争辩说,连续的贝叶斯游戏构成了一类自然游戏,以概括这些结果。特别地,该模型允许优雅地制定反事实遗忘最小化算法,称为公共州CFR(PS-CFR),其自然地将其自身用于有效的实现。经验,通过公共国家CFR求解10 ^ 7个态的扑克排放量需要3分钟和700 MB,而VANILLA CFR的可比版本需要5.5小时和20 GB。此外,CFR的公共规定开辟了利用域特异性假设的可能性,导致在扑克和其他领域的香草CFR上渐近复杂性(和进一步的实证加速)二次减少。总体而言,这表明能够将扑克代表作为顺序贝叶斯游戏在基于CFR的方法的成功中发挥了关键作用。最后,我们将公共州CFR扩展到一般广泛形式的游戏,争论这种延伸享有一些 - 但不是全部的歌曲贝叶斯游戏的福利。
translated by 谷歌翻译
当今许多大型系统的设计,从交通路由环境到智能电网,都依赖游戏理论平衡概念。但是,随着$ n $玩家游戏的大小通常会随着$ n $而成倍增长,标准游戏理论分析实际上是不可行的。最近的方法通过考虑平均场游戏,匿名$ n $玩家游戏的近似值,在这种限制中,玩家的数量是无限的,而人口的状态分布,而不是每个单独的球员的状态,是兴趣。然而,迄今为止研究最多的平均场平衡的平均场nash平衡的实际可计算性通常取决于有益的非一般结构特性,例如单调性或收缩性能,这是已知的算法收敛所必需的。在这项工作中,我们通过开发均值相关和与粗相关的平衡的概念来研究平均场比赛的替代途径。我们证明,可以使用三种经典算法在\ emph {ash All Games}中有效地学习它们,而无需对游戏结构进行任何其他假设。此外,我们在文献中已经建立了对应关系,从而获得了平均场 - $ n $玩家过渡的最佳范围,并经验证明了这些算法在简单游戏中的收敛性。
translated by 谷歌翻译
Correlated Equilibrium is a solution concept that is more general than Nash Equilibrium (NE) and can lead to outcomes with better social welfare. However, its natural extension to the sequential setting, the \textit{Extensive Form Correlated Equilibrium} (EFCE), requires a quadratic amount of space to solve, even in restricted settings without randomness in nature. To alleviate these concerns, we apply \textit{subgame resolving}, a technique extremely successful in finding NE in zero-sum games to solving general-sum EFCEs. Subgame resolving refines a correlation plan in an \textit{online} manner: instead of solving for the full game upfront, it only solves for strategies in subgames that are reached in actual play, resulting in significant computational gains. In this paper, we (i) lay out the foundations to quantify the quality of a refined strategy, in terms of the \textit{social welfare} and \textit{exploitability} of correlation plans, (ii) show that EFCEs possess a sufficient amount of independence between subgames to perform resolving efficiently, and (iii) provide two algorithms for resolving, one using linear programming and the other based on regret minimization. Both methods guarantee \textit{safety}, i.e., they will never be counterproductive. Our methods are the first time an online method has been applied to the correlated, general-sum setting.
translated by 谷歌翻译
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
translated by 谷歌翻译
在非常大型游戏中近似NASH平衡的最新技术利用神经网络来学习大致最佳政策(策略)。一条有前途的研究线使用神经网络来近似反事实遗憾最小化(CFR)或其现代变体。 Dream是目前唯一的基于CFR的神经方法,它是免费模型,因此可以扩展到非常大型游戏的Dream,它在估计的遗憾目标上训练神经网络,由于从Monte Carlo CFR继承的重要性采样术语,该遗憾目标可能具有极高的差异(MCCFR)(MCCFR) )。在本文中,我们提出了一种无偏模的方法,该方法不需要任何重要的采样。我们的方法(Escher)是原则上的,并且可以保证在表格情况下具有很高概率的近似NASH平衡。我们表明,具有Oracle值函数的Escher表格版本的估计遗憾的差异明显低于具有Oracle值函数的结果采样MCCFR和表格Dream的结果。然后,我们表明,埃舍尔的深度学习版本优于先前的艺术状态 - 梦和神经虚拟的自我游戏(NFSP) - 随着游戏规模的增加,差异变得戏剧化。
translated by 谷歌翻译
While Nash equilibrium has emerged as the central game-theoretic solution concept, many important games contain several Nash equilibria and we must determine how to select between them in order to create real strategic agents. Several Nash equilibrium refinement concepts have been proposed and studied for sequential imperfect-information games, the most prominent being trembling-hand perfect equilibrium, quasi-perfect equilibrium, and recently one-sided quasi-perfect equilibrium. These concepts are robust to certain arbitrarily small mistakes, and are guaranteed to always exist; however, we argue that neither of these is the correct concept for developing strong agents in sequential games of imperfect information. We define a new equilibrium refinement concept for extensive-form games called observable perfect equilibrium in which the solution is robust over trembles in publicly-observable action probabilities (not necessarily over all action probabilities that may not be observable by opposing players). Observable perfect equilibrium correctly captures the assumption that the opponent is playing as rationally as possible given mistakes that have been observed (while previous solution concepts do not). We prove that observable perfect equilibrium is always guaranteed to exist, and demonstrate that it leads to a different solution than the prior extensive-form refinements in no-limit poker. We expect observable perfect equilibrium to be a useful equilibrium refinement concept for modeling many important imperfect-information games of interest in artificial intelligence.
translated by 谷歌翻译
反事实遗憾最小化(CFR)在解决大规模不完美信息游戏(IIG)方面取得了许多令人着迷的结果。神经网络近似CFR(神经CFR)是通过概括类似状态之间的决策信息来降低计算和存储器消耗的有希望的技术之一。目前的神经CFR算法必须近似累积遗憾。然而,大规模IIG的高效和准确近似仍然是一个艰难的挑战。本文提出了一种新的CFR变体递归CFR(RECFR)。在RECFR中,学习递归替代值(RSV)并用于替换累积遗憾。证明RECFR可以以$ O(\ FRAC {1} {\ SQRT {T}})$的速率收敛到纳什均衡。基于RECFR,提出了一种具有自动启动学习,神经RECFR-B的新的无模式神经CFR。由于RSV的递归和非累积性质,神经RECFR-B具有比其他神经CFR的较低方差训练目标。实验结果表明,神经RECFR-B以低得多的训练成本与最先进的神经CFR算法竞争。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
我们研究了一个知情的发件人面临的重复信息设计问题,该问题试图影响自我利益接收者的行为。我们考虑接收器面临顺序决策(SDM)问题的设置。在每回合中,发件人都会观察SDM问题中随机事件的实现。这会面临如何逐步向接收者披露此类信息以说服他们遵循(理想的)行动建议的挑战。我们研究了发件人不知道随机事件概率的情况,因此,他们必须在说服接收器的同时逐渐学习它们。首先,我们提供了发件人说服力信息结构集的非平凡的多面近似。这对于设计有效的学习算法至关重要。接下来,我们证明了一个负面的结果:没有学习算法可以说服力。因此,我们通过关注算法来保证接收者对以下建议的遗憾会增长,从而放松说服力。在全反馈设置(发件人观察所有随机事件实现)中,我们提供了一种算法,其中包括$ \ tilde {o}(\ sqrt {t})$ sexter和接收者遗憾。取而代之的是,在Bandit反馈设置中 - 发件人仅观察SDM问题中实际发生的随机事件的实现 - 我们设计了一种算法,给定一个$ \ alpha \ in [1/2,1] $作为输入,确保$ \ tilde {o}({t^\ alpha})$和$ \ tilde {o}(t^{\ max \ arpha,1- \ frac {\ frac {\ alpha} })$遗憾,分别为发件人和接收器。该结果补充了下限,表明这种遗憾的权衡本质上是紧张的。
translated by 谷歌翻译
主导的行动是自然的(也许是最简单的)多代理概括的子最优动作,如标准单代理决策中的那样。因此类似于标准强盗学习,多代理系统中的基本学习问题是如果他们只能观察到他们播放动作的回报的嘈杂的强盗反馈,那么代理商可以学会有效地消除所有主导的动作。令人惊讶的是,尽管有一个看似简单的任务,我们展示了一个相当负面的结果;也就是说,标准没有遗憾的算法 - 包括整个双平均算法的家庭 - 可呈指数级地取消逐渐消除所有主导的行动。此外,具有较强的交换后悔的算法也遭受了类似的指数低效率。为了克服这些障碍,我们开发了一种新的算法,调整EXP3,历史奖励减少(exp3-DH); Exp3-DH逐渐忘记仔细量身定制的速率。我们证明,当所有代理运行Exp3-DH(A.K.A.,在多代理学习中自行发行)时,所有主导的行动都可以在多项多轮内迭代地消除。我们的实验结果进一步证明了Exp3-DH的效率,即使是那些专门用于在游戏中学习的最先进的强盗算法,也无法有效地消除所有主导的行动。
translated by 谷歌翻译
钢筋学习(RL)最近在许多人工智能应用中取得了巨大成功。 RL的许多最前沿应用涉及多个代理,例如,下棋和去游戏,自主驾驶和机器人。不幸的是,古典RL构建的框架不适合多代理学习,因为它假设代理的环境是静止的,并且没有考虑到其他代理的适应性。在本文中,我们介绍了动态环境中的多代理学习的随机游戏模型。我们专注于随机游戏的简单和独立学习动态的发展:每个代理商都是近视,并为其他代理商的战略选择最佳响应类型的行动,而不与对手进行任何协调。为随机游戏开发收敛最佳响应类型独立学习动态有限的进展。我们展示了我们最近提出的简单和独立的学习动态,可保证零汇率随机游戏的融合,以及对此设置中的动态多代理学习的其他同时算法的审查。一路上,我们还重新审视了博弈论和RL文学的一些古典结果,以适应我们独立的学习动态的概念贡献,以及我们分析的数学诺克特。我们希望这篇审查文件成为在博弈论中研究独立和自然学习动态的重新训练的推动力,对于具有动态环境的更具挑战性的环境。
translated by 谷歌翻译
我们介绍了DeepNash,这是一种能够学习从头开始播放不完美的信息游戏策略的自主代理,直到人类的专家级别。 Stratego是人工智能(AI)尚未掌握的少数标志性棋盘游戏之一。这个受欢迎的游戏具有$ 10^{535} $节点的巨大游戏树,即,$ 10^{175} $倍的$倍于GO。它具有在不完美的信息下需要决策的其他复杂性,类似于德克萨斯州Hold'em扑克,该扑克的游戏树较小(以$ 10^{164} $节点为单位)。 Stratego中的决策是在许多离散的动作上做出的,而动作与结果之间没有明显的联系。情节很长,在球员获胜之前经常有数百次动作,而Stratego中的情况则不能像扑克中那样轻松地分解成管理大小的子问题。由于这些原因,Stratego几十年来一直是AI领域的巨大挑战,现有的AI方法几乎没有达到业余比赛水平。 Deepnash使用游戏理论,无模型的深钢筋学习方法,而无需搜索,该方法学会通过自我播放来掌握Stratego。 DeepNash的关键组成部分的正则化NASH Dynamics(R-NAD)算法通过直接修改基础多项式学习动力学来收敛到近似NASH平衡,而不是围绕它“循环”。 Deepnash在Stratego中击败了现有的最先进的AI方法,并在Gravon Games平台上获得了年度(2022年)和历史前3名,并与人类专家竞争。
translated by 谷歌翻译
最近,Daskalakis,Fisselson和Golowich(DFG)(Neurips`21)表明,如果所有代理在多人普通和正常形式游戏中采用乐观的乘法权重更新(OMWU),每个玩家的外部遗憾是$ o(\ textrm {polylog}(t))$ the游戏的$重复。我们从外部遗憾扩展到内部遗憾并交换后悔,从而建立了以$ \ tilde {o}的速率收敛到近似相关均衡的近似相关均衡(t ^ { - 1})$。由于陈和彭(神经潜行群岛20),这实质上提高了以陈和彭(NEURIPS20)的相关均衡的相关均衡率,并且在无遗憾的框架内是最佳的 - 以$ $ $ to to polylogarithmic因素。为了获得这些结果,我们开发了用于建立涉及固定点操作的学习动态的高阶平滑的新技术。具体而言,我们确定STOLTZ和LUGOSI(Mach Learn`05)的无内部遗憾学习动态在组合空间上的无外部后悔动态等效地模拟。这使我们可以在指数大小的集合上交易多项式大型马尔可夫链的计算,用于在指数大小的集合上的(更良好的良好)的线性变换,使我们能够利用类似的技术作为DGF到接近最佳地结合内心遗憾。此外,我们建立了$ O(\ textrm {polylog}(t))$ no-swap-recreet遗憾的blum和mansour(bm)的经典算法(JMLR`07)。我们这样做是通过基于Cauchy积分的技术来介绍DFG的更有限的组合争论。除了对BM的近乎最优遗憾保证的阐明外,我们的论点还提供了进入各种方式的洞察,其中可以在分析更多涉及的学习算法中延长和利用DFG的技术。
translated by 谷歌翻译