我们引入了基于高斯工艺回归和边缘化图内核(GPR-MGK)的探索性主动学习(AL)算法,以最低成本探索化学空间。使用高通量分子动力学模拟生成数据和图神经网络(GNN)以预测,我们为热力学性质预测构建了一个主动学习分子模拟框架。在特定的靶向251,728个烷烃分子中,由4至19个碳原子及其液体物理特性组成:密度,热能和汽化焓,我们使用AL算法选择最有用的分子来代表化学空间。计算和实验测试集的验证表明,只有313个(占总数的0.124 \%)分子足以训练用于计算测试集的$ \ rm r^2> 0.99 $的精确GNN模型和$ \ rm rm r^2>>实验测试集0.94 $。我们重点介绍了提出的AL算法的两个优点:与高通量数据生成和可靠的不确定性量化的兼容性。
translated by 谷歌翻译
Deep learning models that leverage large datasets are often the state of the art for modelling molecular properties. When the datasets are smaller (< 2000 molecules), it is not clear that deep learning approaches are the right modelling tool. In this work we perform an extensive study of the calibration and generalizability of probabilistic machine learning models on small chemical datasets. Using different molecular representations and models, we analyse the quality of their predictions and uncertainties in a variety of tasks (binary, regression) and datasets. We also introduce two simulated experiments that evaluate their performance: (1) Bayesian optimization guided molecular design, (2) inference on out-of-distribution data via ablated cluster splits. We offer practical insights into model and feature choice for modelling small chemical datasets, a common scenario in new chemical experiments. We have packaged our analysis into the DIONYSUS repository, which is open sourced to aid in reproducibility and extension to new datasets.
translated by 谷歌翻译
电子密度$ \ rho(\ vec {r})$是用密度泛函理论(dft)计算地面能量的基本变量。除了总能量之外,$ \ rho(\ vec {r})$分布和$ \ rho(\ vec {r})$的功能通常用于捕获电子规模以功能材料和分子中的关键物理化学现象。方法提供对$ \ rho(\ vec {r})的可紊乱系统,其具有少量计算成本的复杂无序系统可以是对材料相位空间的加快探索朝向具有更好功能的新材料的逆设计的游戏更换者。我们为预测$ \ rho(\ vec {r})$。该模型基于成本图形神经网络,并且在作为消息传递图的一部分的特殊查询点顶点上预测了电子密度,但仅接收消息。该模型在多个数据组中进行测试,分子(QM9),液体乙烯碳酸酯电解质(EC)和Lixniymnzco(1-Y-Z)O 2锂离子电池阴极(NMC)。对于QM9分子,所提出的模型的准确性超过了从DFT获得的$ \ Rho(\ vec {r})$中的典型变异性,以不同的交换相关功能,并显示超出最先进的准确性。混合氧化物(NMC)和电解质(EC)数据集更好的精度甚至更好。线性缩放模型同时探测成千上万点的能力允许计算$ \ Rho(\ vec {r})$的大型复杂系统,比DFT快于允许筛选无序的功能材料。
translated by 谷歌翻译
图形神经网络(GNN)正在化学工程中出现,以基于分子图的物理化学特性端到端学习。 GNNS的一个关键要素是合并函数,将原子矢量结合到分子指纹中。大多数以前的作品都使用标准池功能来预测各种属性。但是,不合适的合并功能会导致概括不佳的非物理GNN。我们根据有关学习特性的物理知识比较并选择有意义的GNN合并方法。通过量子机械计算计算出的分子特性证明了物理池函数的影响。我们还将结果与最近的SET2Set合并方法进行了比较。我们建议使用总和池来预测取决于分子大小的性能并比较分子大小无关的属性的池函数。总体而言,我们表明物理池功能的使用显着增强了概括。
translated by 谷歌翻译
Supervised learning on molecules has incredible potential to be useful in chemistry, drug discovery, and materials science. Luckily, several promising and closely related neural network models invariant to molecular symmetries have already been described in the literature. These models learn a message passing algorithm and aggregation procedure to compute a function of their entire input graph. At this point, the next step is to find a particularly effective variant of this general approach and apply it to chemical prediction benchmarks until we either solve them or reach the limits of the approach. In this paper, we reformulate existing models into a single common framework we call Message Passing Neural Networks (MPNNs) and explore additional novel variations within this framework. Using MPNNs we demonstrate state of the art results on an important molecular property prediction benchmark; these results are strong enough that we believe future work should focus on datasets with larger molecules or more accurate ground truth labels.Recently, large scale quantum chemistry calculation and molecular dynamics simulations coupled with advances in high throughput experiments have begun to generate data at an unprecedented rate. Most classical techniques do not make effective use of the larger amounts of data that are now available. The time is ripe to apply more powerful and flexible machine learning methods to these problems, assuming we can find models with suitable inductive biases. The symmetries of atomic systems suggest neural networks that operate on graph structured data and are invariant to graph isomorphism might also be appropriate for molecules. Sufficiently successful models could someday help automate challenging chemical search problems in drug discovery or materials science.In this paper, our goal is to demonstrate effective machine learning models for chemical prediction problems
translated by 谷歌翻译
定量探索了量子化学参考数据的训练神经网络(NNS)预测的不确定性量化的价值。为此,适当地修改了Physnet NN的体系结构,并使用不同的指标评估所得模型,以量化校准,预测质量以及预测误差和预测的不确定性是否可以相关。 QM9数据库培训的结果以及分布内外的测试集的数据表明,错误和不确定性与线性无关。结果阐明了噪声和冗余使分子的性质预测复杂化,即使在发生变化的情况下,例如在两个原本相同的分子中的双键迁移 - 很小。然后将模型应用于互变异反应的真实数据库。分析特征空间中的成员之间的距离与其他参数结合在一起表明,训练数据集中的冗余信息会导致较大的差异和小错误,而存在相似但非特定的信息的存在会返回大错误,但差异很小。例如,这是对含硝基的脂肪族链的观察到的,尽管训练集包含了与芳香族分子结合的硝基组的几个示例,但这些预测很困难。这强调了训练数据组成的重要性,并提供了化学洞察力,以了解这如何影响ML模型的预测能力。最后,提出的方法可用于通过主动学习优化基于信息的化学数据库改进目标应用程序。
translated by 谷歌翻译
We introduce an end-to-end computational framework that enables hyperparameter optimization with the DeepHyper library, accelerated training, and interpretable AI inference with a suite of state-of-the-art AI models, including CGCNN, PhysNet, SchNet, MPNN, MPNN-transformer, and TorchMD-Net. We use these AI models and the benchmark QM9, hMOF, and MD17 datasets to showcase the prediction of user-specified materials properties in modern computing environments, and to demonstrate translational applications for the modeling of small molecules, crystals and metal organic frameworks with a unified, stand-alone framework. We deployed and tested this framework in the ThetaGPU supercomputer at the Argonne Leadership Computing Facility, and the Delta supercomputer at the National Center for Supercomputing Applications to provide researchers with modern tools to conduct accelerated AI-driven discovery in leadership class computing environments.
translated by 谷歌翻译
Advancements in neural machinery have led to a wide range of algorithmic solutions for molecular property prediction. Two classes of models in particular have yielded promising results: neural networks applied to computed molecular fingerprints or expert-crafted descriptors, and graph convolutional neural networks that construct a learned molecular representation by operating on the graph structure of the molecule.However, recent literature has yet to clearly determine which of these two methods is superior when generalizing to new chemical space. Furthermore, prior research has
translated by 谷歌翻译
The accurate prediction of physicochemical properties of chemical compounds in mixtures (such as the activity coefficient at infinite dilution $\gamma_{ij}^\infty$) is essential for developing novel and more sustainable chemical processes. In this work, we analyze the performance of previously-proposed GNN-based models for the prediction of $\gamma_{ij}^\infty$, and compare them with several mechanistic models in a series of 9 isothermal studies. Moreover, we develop the Gibbs-Helmholtz Graph Neural Network (GH-GNN) model for predicting $\ln \gamma_{ij}^\infty$ of molecular systems at different temperatures. Our method combines the simplicity of a Gibbs-Helmholtz-derived expression with a series of graph neural networks that incorporate explicit molecular and intermolecular descriptors for capturing dispersion and hydrogen bonding effects. We have trained this model using experimentally determined $\ln \gamma_{ij}^\infty$ data of 40,219 binary-systems involving 1032 solutes and 866 solvents, overall showing superior performance compared to the popular UNIFAC-Dortmund model. We analyze the performance of GH-GNN for continuous and discrete inter/extrapolation and give indications for the model's applicability domain and expected accuracy. In general, GH-GNN is able to produce accurate predictions for extrapolated binary-systems if at least 25 systems with the same combination of solute-solvent chemical classes are contained in the training set and a similarity indicator above 0.35 is also present. This model and its applicability domain recommendations have been made open-source at https://github.com/edgarsmdn/GH-GNN.
translated by 谷歌翻译
Molecular machine learning has been maturing rapidly over the last few years.Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem
translated by 谷歌翻译
机器学习(ML)模型与它们在分子动力学研究中的有用性相反,作为反应屏障搜索的替代潜力,成功的成功有限。这是由于化学空间相关过渡状态区域中训练数据的稀缺性。当前,用于培训小分子系统上的ML模型的可用数据集几乎仅包含在平衡处或附近的配置。在这项工作中,我们介绍了包含960万密度函数理论(DFT)的数据集过渡1X的计算,对WB97X/6-31G(D)理论水平的反应途径上和周围的分子构型的力和能量计算。数据是通过在10K反应上以DFT运行轻度弹性带(NEB)计算而生成的,同时保存中间计算。我们在Transition1x上训练最先进的等效图形消息通讯神经网络模型,并在流行的ANI1X和QM9数据集上进行交叉验证。我们表明,ML模型不能仅通过迄今为止流行的基准数据集进行过渡状态区域的特征。 Transition1x是一种新的具有挑战性的基准,它将为开发下一代ML力场提供一个重要的步骤,该电场也远离平衡配置和反应性系统。
translated by 谷歌翻译
In this work, we propose MEDICO, a Multi-viEw Deep generative model for molecule generation, structural optimization, and the SARS-CoV-2 Inhibitor disCOvery. To the best of our knowledge, MEDICO is the first-of-this-kind graph generative model that can generate molecular graphs similar to the structure of targeted molecules, with a multi-view representation learning framework to sufficiently and adaptively learn comprehensive structural semantics from targeted molecular topology and geometry. We show that our MEDICO significantly outperforms the state-of-the-art methods in generating valid, unique, and novel molecules under benchmarking comparisons. In particular, we showcase the multi-view deep learning model enables us to generate not only the molecules structurally similar to the targeted molecules but also the molecules with desired chemical properties, demonstrating the strong capability of our model in exploring the chemical space deeply. Moreover, case study results on targeted molecule generation for the SARS-CoV-2 main protease (Mpro) show that by integrating molecule docking into our model as chemical priori, we successfully generate new small molecules with desired drug-like properties for the Mpro, potentially accelerating the de novo design of Covid-19 drugs. Further, we apply MEDICO to the structural optimization of three well-known Mpro inhibitors (N3, 11a, and GC376) and achieve ~88% improvement in their binding affinity to Mpro, demonstrating the application value of our model for the development of therapeutics for SARS-CoV-2 infection.
translated by 谷歌翻译
基于机器学习的数据驱动方法具有加速原子结构的计算分析。在这种情况下,可靠的不确定性估计对于评估对预测和实现决策的信心很重要。然而,机器学习模型可以产生严重校准的不确定性估计,因此仔细检测和处理不确定性至关重要。在这项工作中,我们扩展了一种消息,该消息通过神经网络,专门用于预测分子和材料的性质,具有校准的概率预测分布。本文提出的方法与先前的工作不同,通过考虑统一框架中的炼体和认知的不确定性,并通过重新校准未经证明数据的预测分布。通过计算机实验,我们表明我们的方法导致准确的模型,用于预测两种公共分子基准数据集,QM9和PC9的训练数据分布良好的分子形成能量。该方法提供了一种用于训练和评估神经网络集合模型的一般框架,该模型能够产生具有良好校准的不确定性估计的分子性质的准确预测。
translated by 谷歌翻译
可拍照的分子显示了可以使用光访问的两个或多个异构体形式。将这些异构体的电子吸收带分开是选择性解决特定异构体并达到高光稳态状态的关键,同时总体红色转移带来的吸收带可以限制因紫外线暴露而限制材料损害,并增加了光疗法应用中的渗透深度。但是,通过合成设计将这些属性工程为系统仍然是一个挑战。在这里,我们提出了一条数据驱动的发现管道,用于由数据集策划和使用高斯过程的多任务学习支撑的分子照片开关。在对电子过渡波长的预测中,我们证明了使用来自四个Photoswitch转变波长的标签训练的多输出高斯过程(MOGP)产生相对于单任务模型的最强预测性能,并且在操作上超过了时间依赖时间依赖性的密度理论(TD) -dft)就预测的墙壁锁定时间而言。我们通过筛选可商购的可拍摄分子库来实验验证我们提出的方法。通过此屏幕,我们确定了几个图案,这些基序显示了它们的异构体的分离电子吸收带,表现出红移的吸收,并且适用于信息传输和光电学应用。我们的策划数据集,代码以及所有型号均可在https://github.com/ryan-rhys/the-photoswitch-dataset上提供
translated by 谷歌翻译
在整个计算科学中,越来越需要利用原始计算马力的持续改进,通过对蛮力的尺度锻炼的尺度增加,以增加网状元素数量的增加。例如,如果不考虑分子水平的相互作用,就不可能对纳米多孔介质的转运进行定量预测,即从紧密的页岩地层提取至关重要的碳氢化合物。同样,惯性限制融合模拟依赖于数值扩散来模拟分子效应,例如非本地转运和混合,而无需真正考虑分子相互作用。考虑到这两个不同的应用程序,我们开发了一种新颖的功能,该功能使用主动学习方法来优化局部细尺度模拟的使用来告知粗尺度流体动力学。我们的方法解决了三个挑战:预测连续性粗尺度轨迹,以推测执行新的精细分子动力学计算,动态地更新细度计算中的粗尺度,并量化神经网络模型中的不确定性。
translated by 谷歌翻译
预测化合物的化学性质在发现具有具体所需特征的新型材料和药物方面至关重要。最近机器学习技术的显着进展使得能够从文献中报告的过去的实验数据启用自动预测建模。然而,这些数据集通常被偏置,因为各种原因,例如实验计划和出版物决策,并且使用这种偏置数据集训练的预测模型经常遭受对偏置分布的过度拟合,并且在随后的用途时执行不良。因此,本研究专注于减轻实验数据集中的偏差。我们采用了两种来自因果推断和域适应的技术与图形神经网络相结合,可以代表分子结构。在四种可能的偏置方案中的实验结果表明,基于逆倾向评分的方法使得稳定的改进,但是域不变的表示学习方法失败。
translated by 谷歌翻译
阐明并准确预测分子的吸毒性和生物活性在药物设计和发现中起关键作用,并且仍然是一个开放的挑战。最近,图神经网络(GNN)在基于图的分子属性预测方面取得了显着进步。但是,当前基于图的深度学习方法忽略了分子的分层信息以及特征通道之间的关系。在这项研究中,我们提出了一个精心设计的分层信息图神经网络框架(称为hignn),用于通过利用分子图和化学合成的可见的无限元素片段来预测分子特性。此外,首先在Hignn体系结构中设计了一个插件功能的注意块,以适应消息传递阶段后自适应重新校准原子特征。广泛的实验表明,Hignn在许多具有挑战性的药物发现相关基准数据集上实现了最先进的预测性能。此外,我们设计了一种分子碎片的相似性机制,以全面研究Hignn模型在子图水平上的解释性,表明Hignn作为强大的深度学习工具可以帮助化学家和药剂师识别出设计更好分子的关键分子,以设计更好的分子,以设计出所需的更好分子。属性或功能。源代码可在https://github.com/idruglab/hignn上公开获得。
translated by 谷歌翻译
预测分子系统的结构和能量特性是分子模拟的基本任务之一,并且具有化学,生物学和医学的用例。在过去的十年中,机器学习算法的出现影响了各种任务的分子模拟,包括原子系统的财产预测。在本文中,我们提出了一种新的方法,用于将从简单分子系统获得的知识转移到更复杂的知识中,并具有明显的原子和自由度。特别是,我们专注于高自由能状态的分类。我们的方法依赖于(i)分子的新型超图表,编码所有相关信息来表征构象的势能,以及(ii)新的消息传递和汇总层来处理和对此类超图结构数据进行预测。尽管问题的复杂性,但我们的结果表明,从三丙氨酸转移到DECA-丙氨酸系统的转移学习中,AUC的AUC为0.92。此外,我们表明,相同的转移学习方法可以用无监督的方式分组,在具有相似的自由能值的簇中,deca-丙氨酸的各种二级结构。我们的研究代表了一个概念证明,即可以设计用于分子系统的可靠传输学习模型,为预测生物学相关系统的结构和能量性能的未开发途径铺平道路。
translated by 谷歌翻译
Data-driven interatomic potentials have emerged as a powerful class of surrogate models for {\it ab initio} potential energy surfaces that are able to reliably predict macroscopic properties with experimental accuracy. In generating accurate and transferable potentials the most time-consuming and arguably most important task is generating the training set, which still requires significant expert user input. To accelerate this process, this work presents \text{\it hyperactive learning} (HAL), a framework for formulating an accelerated sampling algorithm specifically for the task of training database generation. The key idea is to start from a physically motivated sampler (e.g., molecular dynamics) and add a biasing term that drives the system towards high uncertainty and thus to unseen training configurations. Building on this framework, general protocols for building training databases for alloys and polymers leveraging the HAL framework will be presented. For alloys, ACE potentials for AlSi10 are created by fitting to a minimal HAL-generated database containing 88 configurations (32 atoms each) with fast evaluation times of <100 microsecond/atom/cpu-core. These potentials are demonstrated to predict the melting temperature with excellent accuracy. For polymers, a HAL database is built using ACE, able to determine the density of a long polyethylene glycol (PEG) polymer formed of 200 monomer units with experimental accuracy by only fitting to small isolated PEG polymers with sizes ranging from 2 to 32.
translated by 谷歌翻译
机器学习潜力是分子模拟的重要工具,但是由于缺乏高质量数据集来训练它们的发展,它们的开发阻碍了它们。我们描述了Spice数据集,这是一种新的量子化学数据集,用于训练与模拟与蛋白质相互作用的药物样的小分子相关的潜在。它包含超过110万个小分子,二聚体,二肽和溶剂化氨基酸的构象。它包括15个元素,带电和未充电的分子以及广泛的共价和非共价相互作用。它提供了在{\ omega} b97m-d3(bj)/def2-tzVPPD理论水平以及其他有用的数量(例如多极矩和键阶)上计算出的力和能量。我们在其上训练一组机器学习潜力,并证明它们可以在化学空间的广泛区域中实现化学精度。它可以作为创建可转移的,准备使用潜在功能用于分子模拟的宝贵资源。
translated by 谷歌翻译