联合学习用于大量(数百万)边缘移动设备的机器学习模型的分散培训。它充满挑战,因为移动设备通常具有有限的通信带宽和本地计算资源。因此,提高联合学习的效率对于可扩展性和可用性至关重要。在本文中,我们建议利用部分训练的神经网络,该网络在整个训练过程中冻结了一部分模型参数,以降低对模型性能的影响几乎没有影响的通信成本。通过广泛的实验,我们经验证明,部分培训的神经网络(FEDPT)的联合学习可能导致卓越的通信准确性权衡,通信成本高达46美元,以小的准确度成本。我们的方法还实现了更快的培训,具有较小的内存占用空间,更好的效用,以便强​​大的差异隐私保证。对于推动设备上学习中的过度参数化的局限性,所提出的FEDPT方法可以特别有趣。
translated by 谷歌翻译
可扩展性和隐私是交叉设备联合学习(FL)系统的两个关键问题。在这项工作中,我们确定了FL中的客户端更新的同步流动聚合不能高效地缩放到几百个并行培训之外。它导致ModelPerforce和训练速度的回报递减,Ampanysto大批量培训。另一方面,FL(即异步FL)中的客户端更新的异步聚合减轻了可扩展性问题。但是,聚合个性链子更新与安全聚合不兼容,这可能导致系统的不良隐私水平。为了解决这些问题,我们提出了一种新颖的缓冲异步聚合方法FedBuff,这是不可知的优化器的选择,并结合了同步和异步FL的最佳特性。我们经验证明FEDBuff比同步FL更有效,比异步FL效率更高3.3倍,同时兼容保留保护技术,如安全聚合和差异隐私。我们在平滑的非凸设置中提供理论融合保证。最后,我们显示在差异私有培训下,FedBuff可以在低隐私设置下占FEDAVGM并实现更高隐私设置的相同实用程序。
translated by 谷歌翻译
联合学习(FL)框架使Edge客户能够协作学习共享的推理模型,同时保留对客户的培训数据的隐私。最近,已经采取了许多启发式方法来概括集中化的自适应优化方法,例如SGDM,Adam,Adagrad等,以提高收敛性和准确性的联合设置。但是,关于在联合设置中的位置以及如何设计和利用自适应优化方法的理论原理仍然很少。这项工作旨在从普通微分方程(ODE)的动力学的角度开发新的自适应优化方法,以开发FL的新型自适应优化方法。首先,建立了一个分析框架,以在联合优化方法和相应集中优化器的ODES分解之间建立连接。其次,基于这个分析框架,开发了一种动量解耦自适应优化方法FedDA,以充分利用每种本地迭代的全球动量并加速训练收敛。最后但并非最不重要的一点是,在训练过程结束时,全部批处理梯度用于模仿集中式优化,以确保收敛并克服由自适应优化方法引起的可能的不一致。
translated by 谷歌翻译
Federated learning is a distributed machine learning paradigm in which a large number of clients coordinate with a central server to learn a model without sharing their own training data. Standard federated optimization methods such as Federated Averaging (FEDAVG) are often difficult to tune and exhibit unfavorable convergence behavior. In non-federated settings, adaptive optimization methods have had notable success in combating such issues. In this work, we propose federated versions of adaptive optimizers, including ADAGRAD, ADAM, and YOGI, and analyze their convergence in the presence of heterogeneous data for general nonconvex settings. Our results highlight the interplay between client heterogeneity and communication efficiency. We also perform extensive experiments on these methods and show that the use of adaptive optimizers can significantly improve the performance of federated learning.
translated by 谷歌翻译
Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. We term this decentralized approach Federated Learning.We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets. These experiments demonstrate the approach is robust to the unbalanced and non-IID data distributions that are a defining characteristic of this setting. Communication costs are the principal constraint, and we show a reduction in required communication rounds by 10-100× as compared to synchronized stochastic gradient descent.
translated by 谷歌翻译
当客户具有不同的数据分布时,最新的联合学习方法的性能比其集中式同行差得多。对于神经网络,即使集中式SGD可以轻松找到同时执行所有客户端的解决方案,当前联合优化方法也无法收敛到可比的解决方案。我们表明,这种性能差异很大程度上可以归因于非概念性提出的优化挑战。具体来说,我们发现网络的早期层确实学习了有用的功能,但是最后一层无法使用它们。也就是说,适用于此非凸问题的联合优化扭曲了最终层的学习。利用这一观察结果,我们提出了一个火车征征训练(TCT)程序来避开此问题:首先,使用现成方法(例如FedAvg)学习功能;然后,优化从网络的经验神经切线核近似获得的共透性问题。当客户具有不同的数据时,我们的技术可在FMNIST上的准确性提高高达36%,而CIFAR10的准确性提高了 +37%。
translated by 谷歌翻译
隐私和沟通效率是联邦神经网络培训中的重要挑战,并将它们组合仍然是一个公开的问题。在这项工作中,我们开发了一种统一高度压缩通信和差异隐私(DP)的方法。我们引入基于相对熵编码(REC)到联合设置的压缩技术。通过对REC进行微小的修改,我们获得了一种可怕的私立学习算法,DP-REC,并展示了如何计算其隐私保证。我们的实验表明,DP-REC大大降低了通信成本,同时提供与最先进的隐私保证。
translated by 谷歌翻译
经常引用联合学习的挑战是数据异质性的存在 - 不同客户的数据可能遵循非常不同的分布。已经提出了几种联合优化方法来应对这些挑战。在文献中,经验评估通常从随机初始化开始联合培训。但是,在联合学习的许多实际应用中,服务器可以访问培训任务的代理数据,该数据可用于在开始联合培训之前用于预训练模型。我们从经验上研究了使用四个常见联合学习基准数据集从联邦学习中的预训练模型开始的影响。毫不奇怪,从预先训练的模型开始,比从随机初始化开始时,缩短了达到目标错误率所需的训练时间,并使训练更准确的模型(最高40 \%)。令人惊讶的是,我们还发现,从预先训练的初始化开始联合培训时,数据异质性的效果不那么重要。相反,从预先训练的模型开始时,使用服务器上的自适应优化器(例如\ textsc {fedadam})始终导致最佳准确性。我们建议未来提出和评估联合优化方法的工作在开始随机和预训练的初始化时考虑性能。我们还认为,这项研究提出了几个问题,以进一步了解异质性在联合优化中的作用。
translated by 谷歌翻译
联邦学习(FL)和分裂学习(SL)是两个流行的分布式机器学习方法。遵循模型到数据方案;客户培训和测试机器学习模型而不共享原始数据。由于客户端和服务器之间的机器学习模型架构,SL提供比FL更好的模型隐私。此外,分割模型使SL成为资源受限环境的更好选择。然而,由于基于中继的训练,SL表现在多个客户端的继电器训练引起的速度。在这方面,本文提出了一种名为Splitfed Learning(SFL)的新方法,该方法可分摊两种方法消除其固有缺点,以及包含差异隐私和PIXELD的精制架构配置,以增强数据隐私和模型鲁棒性。我们的分析和经验结果表明,(纯)SFL提供了类似的测试精度和通信效率,作为SL,同时每个全球时代显着降低其用于多个客户端的SL中的计算时间。此外,如SL在SL中,它的通信效率随着客户的数量而改善。此外,在扩展实验环境下进一步评估了具有隐私和鲁棒性度量的SFL的性能。
translated by 谷歌翻译
联合学习(FL)是以保护隐私方式在异质客户设备上进行机器学习的框架。迄今为止,大多数FL算法都在多个回合中学习一个“全局”服务器模型。在每回合中,相同的服务器模型都向所有参与的客户端广播,在本地更新,然后跨客户端进行汇总。在这项工作中,我们提出了一个更一般的过程,客户“选择”了发送给他们的值的程序。值得注意的是,这使客户可以在较小的数据依赖性切片上操作。为了使这种实用性,我们概述了原始的联合选择,该选择可以在现实的FL系统中进行特定于客户的选择。我们讨论了如何使用联合选择进行模型培训,并表明它可以导致通信和客户记忆使用情况的急剧减少,从而有可能使模型的训练太大而无法适合处个设备。我们还讨论了联邦选择对隐私和信任的含义,这反过来影响了可能的系统约束和设计。最后,我们讨论有关模型体系结构,隐私保护技术和实用FL系统的开放问题。
translated by 谷歌翻译
大规模的神经网络具有相当大的表现力。它们非常适合工业应用中的复杂学习任务。但是,在当前联邦学习(FL)范式下,大型模型对训练构成了重大挑战。现有的有效FL训练的方法通常利用模型参数辍学。但是,操纵单个模型参数不仅在训练大规模FL模型时有意义地减少通信开销效率低下,而且还可能不利于缩放工作和模型性能,如最近的研究所示。为了解决这些问题,我们提出了联合的机会障碍辍学方法(FEDOBD)方法。关键的新颖性是,它将大规模模型分解为语义块,以便FL参与者可以机会上传量化的块,这些块被认为对训练该模型非常重要,以供FL服务器进行聚合。基于多个现实世界数据集的五种最先进方法评估FEDOBD的广泛实验表明,与最佳性能基线方法相比,它将整体通信开销降低了70%以上,同时达到了最高的测试准确性。据我们所知,FEDOBD是在块级别而不是在单个参数级别上执行FL模型上辍学的第一种方法。
translated by 谷歌翻译
当可用的硬件无法满足内存和计算要求以有效地训练高性能的机器学习模型时,需要妥协训练质量或模型复杂性。在联合学习(FL)中,节点是比传统服务器级硬件更具限制的数量级,并且通常是电池供电的,严重限制了可以在此范式下训练的模型的复杂性。尽管大多数研究都集中在设计更好的聚合策略上以提高收敛速度并减轻FL的沟通成本,但更少的努力致力于加快设备培训。这样的阶段重复数百次(即每回合)并可能涉及数千个设备,这是培训联合模型所需的大部分时间,以及客户端的全部能源消耗。在这项工作中,我们介绍了第一个研究在FL工作负载中培训时间引入稀疏性时出现的独特方面的研究。然后,我们提出了Zerofl,该框架依赖于高度稀疏的操作来加快设备训练。与通过将最先进的稀疏训练框架适应FL设置相比,接受Zerofl和95%稀疏性训练的模型高达2.3%的精度。
translated by 谷歌翻译
最近联合学习(FL)范式的潜在假设是本地模型通常与全局模型共享与全局模型相同的网络架构,这对于具有不同的硬件和基础架构的移动和IOT设备变得不切实际。可扩展的联合学习框架应该解决配备不同计算和通信功能的异构客户端。为此,本文提出了一种新的联合模型压缩框架,它将异构低级模型分配给客户端,然后将它们聚合到全局全级模型中。我们的解决方案使得能够培训具有不同计算复杂性的异构本地模型,并汇总单个全局模型。此外,FEDHM不仅降低了设备的计算复杂性,而且还通过使用低秩模型来降低通信成本。广泛的实验结果表明,我们提出的\ System在测试顶-1精度(平均精度4.6%的精度增益)方面优于现行修剪的液体方法,在各种异构流域下较小的型号尺寸(平均较小为1.5倍) 。
translated by 谷歌翻译
联合学习(FL)可以从云到资源限制的边缘设备分发机器学习工作负载。遗憾的是,当前的深网络不仅对边缘设备的推理和培训造成了太重,而且对于在带宽约束网络上传送更新,也太大了。在本文中,我们开发,实施和实验验证了所谓的联合动态稀疏训练(FEDDST)的新型FL框架,通过该训练可以通过该培训和培训复杂的神经网络,在设备上计算和网络内通信中具有基本上提高的效率。在FEDDST的核心是一个动态过程,可以从目标完整网络中提取和列出稀疏子网。通过这个方案,“两只鸟类用一块石头杀死:”而不是完整的模型,每个客户端都会对自己的稀疏网络进行有效的培训,并且在设备和云之间仅传输稀疏网络。此外,我们的结果表明,在流动训练期间的动态稀疏性更灵活地容纳比固定的共用稀疏面具的局部异质性。此外,动态稀疏性自然地引入了培训动态的“时间自化效应”,即使通过密集训练也会提高流程。在一个现实和挑战的非I.I.D。 FL Setting,FEDDST始终如一地优于我们的实验中的竞争算法:例如,在非IID CIFAR-10上的任何固定上传数据帽时,在给定相同的上传数据帽时,它会在FedVGM上获得令人印象深刻的精度优势;即使在上传数据帽2倍,也可以进一步展示FEDDST的疗效,即使FEDAVGM为2X,即使将FEDAVGM提供精度差距也会保持3%。代码可用:https://github.com/bibikar/feddst。
translated by 谷歌翻译
在存在数据掠夺性保存问题的情况下,有效地在许多设备和资源限制上(尤其是在边缘设备上)的有效部署深度神经网络是最具挑战性的问题之一。传统方法已经演变为改善单个全球模型,同时保持每个本地培训数据分散(即数据杂质性),或者培训一个曾经是一个曾经是一个曾经是的网络,该网络支持多样化的建筑设置,以解决配备不同计算功能的异质系统(即模型杂种)。但是,很少的研究同时考虑了这两个方向。在这项工作中,我们提出了一个新颖的框架来考虑两种情况,即超级网训练联合会(FEDSUP),客户在该场景中发送和接收一条超级网,其中包含从本身中采样的所有可能的体系结构。它的灵感来自联邦学习模型聚合阶段(FL)中平均参数的启发,类似于超级网训练中的体重分享。具体而言,在FedSup框架中,训练单射击模型中广泛使用的重量分享方法与联邦学习的平均(FedAvg)结合在一起。在我们的框架下,我们通过将子模型发送给广播阶段的客户来降低沟通成本和培训间接费用,提出有效的算法(电子馈SUP)。我们展示了几种增强FL环境中超网训练的策略,并进行广泛的经验评估。结果框架被证明为在几个标准基准上的数据和模型杂质性的鲁棒性铺平了道路。
translated by 谷歌翻译
联合学习(FL)作为边缘设备的有希望的技术,以协作学习共享预测模型,同时保持其训练数据,从而解耦了从需要存储云中的数据的机器学习的能力。然而,在规模和系统异质性方面,FL难以现实地实现。虽然有许多用于模拟FL算法的研究框架,但它们不支持在异构边缘设备上进行可扩展的流程。在本文中,我们呈现花 - 一种全面的FL框架,通过提供新的设施来执行大规模的FL实验并考虑丰富的异构流程来区分现有平台。我们的实验表明花卉可以仅使用一对高端GPU在客户尺寸下进行FL实验。然后,研究人员可以将实验无缝地迁移到真实设备中以检查设计空间的其他部分。我们认为花卉为社区提供了一个批判性的新工具,用于研究和发展。
translated by 谷歌翻译
由于服务器客户的通信和设备计算的瓶颈,大多数研究联合学习的研究都集中在小型模型上。在这项工作中,我们利用各种技术来缓解这些瓶颈,以在联合学习的跨设备中训练更大的语言模型。借助部分模型培训,量化,有效的转移学习和沟通效率优化器的系统应用,我们能够培训$ 21 $ M的参数变压器和20.2美元的参数构象异构体,这些构象异构体与类似大小相同或更好的困惑LSTM具有$ \ sim10 \ times $ $较小的客户到服务器通信成本,比文献中常见的较小的LSTMS $ 11 \%$ $ $ $。
translated by 谷歌翻译
联合学习是一种分布式的机器学习方法,其中单个服务器和多个客户端在不共享客户端数据集的情况下协作构建机器学习模型。联合学习的一个具有挑战性的问题是数据异质性(即,数据分布在客户端可能有所不同)。为了应对这个问题,众多联合学习方法旨在为客户提供个性化的联合学习,并为客户建立优化的模型。尽管现有研究通过经验评估了自己的方法,但这些研究中的实验环境(例如比较方法,数据集和客户设置)彼此不同,目前尚不清楚哪种个性化的联邦学习方法可以实现最佳性能,以及取得多少进展,可以进行多大进展。通过使用这些方法而不是标准(即非个人化)联合学习来制作。在本文中,我们通过全面的实验基准了现有的个性化联合学习的性能,以评估每种方法的特征。我们的实验研究表明,(1)没有冠军方法,(2)大数据异质性通常会导致高准确的预测,并且(3)具有微调的标准联合学习方法(例如FedAvg)通常超过了个性化的联邦学习方法。我们为研究人员开放基准工具FedBench,以通过各种实验环境进行实验研究。
translated by 谷歌翻译
传统的深度学习方法(DL)需要在中央服务器上收集和处理的培训数据,这些中央服务器通常在保健等隐私敏感域中挑战。为此,提出了一种新的学习范式,称为联合学习(FL),在解决隐私和数据所有权问题的同时将DL的潜力带到了这些域。 FL使远程客户端能够在保持数据本地时学习共享ML模型。然而,传统的FL系统面临多种挑战,例如可扩展性,复杂的基础设施管理,并且由于空闲客户端而被浪费的计算和产生的成本。 FL系统的这些挑战与无服务器计算和功能 - AS-Service(FAAS)平台旨在解决的核心问题密切对齐。这些包括快速可扩展性,无基础设施管理,自动缩放为空闲客户端,以及每次使用付费计费模型。为此,我们为无服务器FL展示了一个新颖的系统和框架,称为不发烟。我们的系统支持多个商业和自主主机的FAAS提供商,可以在机构数据中心和边缘设备上部署在云端,内部部署。据我们所知,我们是第一个能够在一大面料的异构FAAS提供商中启用FL,同时提供安全性和差异隐私等重要功能。我们展示了全面的实验,即使用我们的系统可以成功地培训多达200个客户功能的不同任务,更容易实现。此外,我们通过将其与传统的FL系统进行比较来证明我们的方法的实际可行性,并表明它可以更便宜,更资源效率更便宜。
translated by 谷歌翻译
联邦学习〜(FL)最近引起了学术界和行业的越来越多的关注,其最终目标是在隐私和沟通限制下进行协作培训。现有的基于FL算法的现有迭代模型需要大量的通信回合,以获得良好的模型,这是由于不同客户之间的极为不平衡和非平衡的I.D数据分配。因此,我们建议FedDM从多个本地替代功能中构建全球培训目标,这使服务器能够获得对损失格局的更全球视野。详细说明,我们在每个客户端构建了合成数据集,以在本地匹配从原始数据到分发匹配的损失景观。与笨拙的模型权重相比,FedDM通过传输更多信息和较小的合成数据来降低通信回合并提高模型质量。我们对三个图像分类数据集进行了广泛的实验,结果表明,在效率和模型性能方面,我们的方法可以优于其他FL的实验。此外,我们证明,FedDM可以适应使用高斯机制来保护差异隐私,并在相同的隐私预算下训练更好的模型。
translated by 谷歌翻译