大规模的语言模型(LLM),例如GPT-2,BERT和ROBERTA已成功应用于ASR N-OX-t-bess Rescore。但是,在最新的ASR系统附近,它们是否或如何使竞争性受益。在这项研究中,我们将LLM重新验证纳入最具竞争力的ASR基准之一:构象异构体模型。我们证明,LLM的双向,预处理,内域填充和上下文增强可以实现一致的改进。此外,我们的词汇分析阐明了这些组件中的每一个如何有助于ASR性能。
translated by 谷歌翻译
会话言论通常在话语水平上以松散的句法结构体现,但同时表现出连续话语的局部相干关系。事先工作已经表明,使用经常性神经网络或长短期存储器语言模型(LM)捕获较长的上下文信息可能遭受最近的偏置,而不是在远程上下文中。为了捕获词语和跨越话语之间的长期语义互动,我们提出了对话语音的自动语音识别(ASR)中语言建模的不同谈话历史融合方法。此外,引入了一种新的函数融合机制,该机制被引入熔断器并利用当前话语的声学嵌入和其相应的对话历史的语义含量以协作方式。为了塑造我们的想法,我们将ASR N-Best假设救援人员框架作为预测问题,利用BERT,一个标志性的预训练LM,作为成分车辆,以便于从给定的N最佳假设列表中选择Oracle假设。在AMI基准数据集上进行的实证实验似乎展示了我们对某些目前的线上的方法相关的可行性和功效。
translated by 谷歌翻译
连接派时间分类(CTC)的模型在自动语音识别(ASR)方面具有吸引力,因为它们的非自动性性质。为了利用仅文本数据,语言模型(LM)集成方法(例如重新纠正和浅融合)已被广泛用于CTC。但是,由于需要降低推理速度,因此他们失去了CTC的非自动性性本质。在这项研究中,我们提出了一种使用电话条件的蒙版LM(PC-MLM)的误差校正方法。在提出的方法中,掩盖了来自CTC的贪婪解码输出中的较不自信的单词令牌。然后,PC-MLM预测这些蒙版的单词令牌给定的单词和手机补充了CTC。我们进一步将其扩展到可删除的PC-MLM,以解决插入错误。由于CTC和PC-MLM均为非自动回旋模型,因此该方法可以快速LM集成。在域适应设置中对自发日本(CSJ)和TED-LIUM2语料库进行的实验评估表明,我们所提出的方法在推理速度方面优于重新逆转和浅融合,并且在CSJ上的识别准确性方面。
translated by 谷歌翻译
由于无标记的文本和语音数据的广泛可用性,最近基于仅音频数据的仅文本和半监督培训已广受欢迎。在这项工作中,我们建议将纯文本和半监督培训纳入基于注意力的审议模型。通过将纯文本数据合并到培训审议文本编码器的变压器(BERT)的双向编码器表示中,以及使用联合声学和文本解码器(JATD)和半诉讼程序的大规模文本到语音和纯音频和音频话语培训,与基线审议相比,我们的各种任务减少了4%-12%。与最先进的语言模型(LM)纠正方法相比,审议模型将Google语音搜索降低了11%。我们表明,与具有合理的终端潜伏期的最先进的LM委员相比,审议模型还获得了正面的人类并排评估。
translated by 谷歌翻译
语言模型(LMS)显着提高端到端模型(E2E)模型在训练过程中很少见的单词的识别准确性,当时在浅融合或重新恢复设置中。在这项工作中,我们介绍了LMS在判别培训框架中学习混合自动回旋传感器(HAT)模型的研究,以减轻有关使用LMS的训练与推理差距。对于浅融合设置,我们在假设生成和损失计算过程中都使用LMS,而LM感知的MWER训练模型可实现10 \%的相对改进,比用标准MWER在语音搜索测试集中培训的模型相对改进,其中包含稀有单词。对于重新设置,我们学会了一个小型神经模块,以数据依赖性方式产生串联的融合权重。该模型与常规MWER训练的模型相同,但无需清除融合重量。
translated by 谷歌翻译
Connectionist时间分类(CTC)的模型很有吸引力,因为它们在自动语音识别(ASR)中的快速推断。语言模型(LM)集成方法(例如浅融合和重新恢复)可以通过利用文本语料库的知识来提高基于CTC的ASR的识别准确性。但是,它们大大减慢了CTC的推论。在这项研究中,我们建议提炼基于CTC的ASR的BERT知识,从而扩展了我们先前针对基于注意的ASR的研究。基于CTC的ASR在训练过程中学习了BERT的知识,并且在测试过程中不使用BERT,从而维持CTC的快速推断。与基于注意力的模型不同,基于CTC的模型做出了框架级预测,因此它们需要与BERT的令牌级预测进行蒸馏。我们建议通过计算最合理的CTC路径来获得比对。对自发日语(CSJ)和TED-LIUM2语料库的实验评估表明,我们的方法改善了基于CTC的ASR的性能,而无需推理速度成本。
translated by 谷歌翻译
Collecting sufficient labeled data for spoken language understanding (SLU) is expensive and time-consuming. Recent studies achieved promising results by using pre-trained models in low-resource scenarios. Inspired by this, we aim to ask: which (if any) pre-training strategies can improve performance across SLU benchmarks? To answer this question, we employ four types of pre-trained models and their combinations for SLU. We leverage self-supervised speech and language models (LM) pre-trained on large quantities of unpaired data to extract strong speech and text representations. We also explore using supervised models pre-trained on larger external automatic speech recognition (ASR) or SLU corpora. We conduct extensive experiments on the SLU Evaluation (SLUE) benchmark and observe self-supervised pre-trained models to be more powerful, with pre-trained LM and speech models being most beneficial for the Sentiment Analysis and Named Entity Recognition task, respectively.
translated by 谷歌翻译
在自动语音识别(ASR)研究中,歧视性标准在DNN-HMM系统中取得了出色的性能。鉴于这一成功,采用判别标准是有望提高端到端(E2E)ASR系统的性能。有了这一动机,以前的作品将最小贝叶斯风险(MBR,歧视性标准之一)引入了E2E ASR系统中。但是,基于MBR的方法的有效性和效率受到损害:MBR标准仅用于系统培训,这在训练和解码之间造成了不匹配;基于MBR的方法中的直接解码过程导致需要预先训练的模型和缓慢的训练速度。为此,在这项工作中提出了新的算法,以整合另一种广泛使用的判别标准,无晶格的最大互信息(LF-MMI),不仅在训练阶段,而且在解码过程中。提出的LF-MI训练和解码方法显示了它们对两个广泛使用的E2E框架的有效性:基于注意力的编码器解码器(AEDS)和神经传感器(NTS)。与基于MBR的方法相比,提出的LF-MMI方法:保持训练和解码之间的一致性;避开直立的解码过程;来自具有卓越训练效率的随机初始化模型的火车。实验表明,LF-MI方法的表现优于其MBR对应物,并始终导致各种框架和数据集从30小时到14.3k小时上的统计学意义改进。所提出的方法在Aishell-1(CER 4.10%)和Aishell-2(CER 5.02%)数据集上实现了最先进的结果(SOTA)。代码已发布。
translated by 谷歌翻译
梁搜索是端到端模型的主要ASR解码算法,生成树结构化假设。但是,最近的研究表明,通过假设合并进行解码可以通过可比或更好的性能实现更有效的搜索。但是,复发网络中的完整上下文与假设合并不兼容。我们建议在RNN传感器的预测网络中使用矢量定量的长期记忆单元(VQ-LSTM)。通过与ASR网络共同培训离散表示形式,可以积极合并假设以生成晶格。我们在总机语料库上进行的实验表明,提出的VQ RNN传感器改善了具有常规预测网络的换能器的ASR性能,同时还产生了具有相同光束尺寸的Oracle Word错误率(WER)的密集晶格。其他语言模型撤退实验还证明了拟议的晶格生成方案的有效性。
translated by 谷歌翻译
Recent studies have shown that using an external Language Model (LM) benefits the end-to-end Automatic Speech Recognition (ASR). However, predicting tokens that appear less frequently in the training set is still quite challenging. The long-tail prediction problems have been widely studied in many applications, but only been addressed by a few studies for ASR and LMs. In this paper, we propose a new memory augmented lookup dictionary based Transformer architecture for LM. The newly introduced lookup dictionary incorporates rich contextual information in training set, which is vital to correctly predict long-tail tokens. With intensive experiments on Chinese and English data sets, our proposed method is proved to outperform the baseline Transformer LM by a great margin on both word/character error rate and tail tokens error rate. This is achieved without impact on the decoding efficiency. Overall, we demonstrate the effectiveness of our proposed method in boosting the ASR decoding performance, especially for long-tail tokens.
translated by 谷歌翻译
End-to-end speech recognition models trained using joint Connectionist Temporal Classification (CTC)-Attention loss have gained popularity recently. In these models, a non-autoregressive CTC decoder is often used at inference time due to its speed and simplicity. However, such models are hard to personalize because of their conditional independence assumption that prevents output tokens from previous time steps to influence future predictions. To tackle this, we propose a novel two-way approach that first biases the encoder with attention over a predefined list of rare long-tail and out-of-vocabulary (OOV) words and then uses dynamic boosting and phone alignment network during decoding to further bias the subword predictions. We evaluate our approach on open-source VoxPopuli and in-house medical datasets to showcase a 60% improvement in F1 score on domain-specific rare words over a strong CTC baseline.
translated by 谷歌翻译
上下文ASR将偏见项列表与音频一起列出,随着ASR使用变得更加普遍,最近引起了最新的兴趣。我们正在发布上下文偏见列表,以伴随Enation21数据集,为此任务创建公共基准。我们使用WENET工具包中预处理的端到端ASR模型在此基准测试上介绍了基线结果。我们显示了应用于两种不同解码算法的浅融合上下文偏置的结果。我们的基线结果证实了观察到的观察,即端到端模型尤其是在训练过程中很少见或从未见过的单词,并且现有的浅融合技术不能充分解决这个问题。我们提出了一个替代拼写预测模型,与没有其他拼写的上下文偏见相比,相对相对,将稀有单词相对34.7%,而访问量的单词相对97.2%。该模型在概念上与先前工作中使用的模型相似,但是更容易实现,因为它不依赖发音字典或现有的文本对语音系统。
translated by 谷歌翻译
最近,端到端(E2E)框架在各种自动语音识别(ASR)任务上取得了显着的结果。但是,无格的最大互信息(LF-MMI),作为在混合ASR系统中显示出卓越性能的鉴别性培训标准之一,很少在E2E ASR框架中采用。在这项工作中,我们提出了一种新的方法,将LF-MMI标准集成到培训和解码阶段的E2E ASR框架中。该方法显示了其在两个最广泛使用的E2E框架上的有效性,包括基于注意的编码器解码器(AED)和神经传感器(NTS)。实验表明,LF-MMI标准的引入始终如一地导致各种数据集和不同E2E ASR框架的显着性能改进。我们最好的模型在Aishell-1开发/测试集上实现了4.1 \%/ 4.4 \%的竞争力;我们还在强大的基线上实现了对Aishell-2和Librispeech数据集的显着误差。
translated by 谷歌翻译
口语理解(SLU)是大多数人机相互作用系统中的核心任务。随着智能家居,智能手机和智能扬声器的出现,SLU已成为该行业的关键技术。在经典的SLU方法中,自动语音识别(ASR)模块将语音信号转录为文本表示,自然语言理解(NLU)模块从中提取语义信息。最近,基于深神经网络的端到端SLU(E2E SLU)已经获得了动力,因为它受益于ASR和NLU部分的联合优化,因此限制了管道架构的误差效应的级联反应。但是,对于E2E模型用于预测语音输入的概念和意图的实际语言特性知之甚少。在本文中,我们提出了一项研究,以确定E2E模型执行SLU任务的信号特征和其他语言特性。该研究是在必须处理非英语(此处法语)语音命令的智能房屋的应用领域进行的。结果表明,良好的E2E SLU性能并不总是需要完美的ASR功能。此外,结果表明,与管道模型相比,E2E模型在处理背景噪声和句法变化方面具有出色的功能。最后,更细粒度的分析表明,E2E模型使用输入信号的音调信息来识别语音命令概念。本文概述的结果和方法提供了一个跳板,以进一步分析语音处理中的E2E模型。
translated by 谷歌翻译
最近的言语和语言技术的方法预先rain非常大型模型,用于特定任务。然而,这种大型模型的好处通常仅限于世界上少数资源丰富的语言。在这项工作中,我们对来自印度次大陆的低资源语言构建ASR系统进行多种贡献。首先,我们从各种领域策划40个印度语言的17,000小时的原始语音数据,包括教育,新闻,技术和金融。其次,使用这种原始语音数据,我们预先存在于40个印度语言的Wav2Vec样式模型的多个变体。第三,我们分析佩带的模型以查找关键特点:码本矢量的类似探测音素在语言中共享,跨层的表示是语言系列的判别,并且注意力头通常会在小型本地窗口中注意。第四,我们微调了9种语言的下游ASR模型,并在3个公共数据集上获得最先进的结果,包括非常低的资源语言,如Sinhala和Nepali。我们的工作建立了多语言预介质是建立ASR系统的有效策略,为印度次大陆的语言上不同的扬声器建立ASR系统。
translated by 谷歌翻译
自动语音识别(ASR)中编辑的后编辑需要自动纠正ASR系统产生的常见和系统错误。 ASR系统的输出在很大程度上容易出现语音和拼写错误。在本文中,我们建议使用强大的预训练的序列模型BART,BART进一步适应训练以作为剥夺模型,以纠正此类类型的错误。自适应培训是在通过合成诱导错误以及通过合并现有ASR系统中的实际错误获得的增强数据集上执行的。我们还提出了一种简单的方法,可以使用单词级别对齐来恢复输出。对重音语音数据的实验结果表明,我们的策略有效地纠正了大量的ASR错误,并在与竞争性基线相比时会产生改善的结果。我们还强调了在印地语语言中相关的语法误差校正任务中获得的负面结果,显示了通过我们建议的模型捕获更广泛上下文的限制。
translated by 谷歌翻译
常规的自动语音识别系统不会产生标点符号,这对于语音识别结果的可读性很重要。随后的自然语言处理任务(例如机器翻译)也需要它们。标点符号预测模型上有许多作品将标点符号插入语音识别结果中作为后处理。但是,这些研究并未利用声学信息进行标点符号预测,并且直接受语音识别错误的影响。在这项研究中,我们提出了一个端到端模型,该模型将语音作为输入并输出标点的文本。在使用声学信息时,该模型有望在语音识别错误方面可靠地预测标点符号。我们还建议使用辅助损失,以使用中间层和未插入文本的输出来训练模型。通过实验,我们将提出的模型的性能与级联系统的性能进行比较。所提出的模型比级联系统获得更高的标点符号预测准确性,而无需牺牲语音识别错误率。还证明,使用中间输出针对未插入文本的多任务学习有效。此外,与级联系统相比,提出的模型仅具有约1/7的参数。
translated by 谷歌翻译
口语理解(SLU)系统提取文本成绩单和语义与意图和插槽相关的语言。 SLU系统通常由(1)自动语音识别(ASR)模块组成,(2)接口来自ASR相关输出的接口模块,以及(3)自然语言理解(NLU)模块。 SLU系统中的接口随附文本转录或更丰富的信息(例如从ASR到NLU)的信息。在本文中,我们研究界面如何影响与口语理解的联合培训。最值得注意的是,我们在公开可用的50小时SLURP数据集中获得了最新结果。我们首先利用通过文本界面连接的大型ASR和NLU模型,然后通过序列损耗函数共同训练这两个模型。对于未利用预位模型的场景,使用更丰富的神经界面通过联合序列损失训练获得了最佳结果。最后,我们显示了利用预期模型随培训数据规模增加的总体减少影响。
translated by 谷歌翻译
统一的流和非流式的双通(U2)用于语音识别的端到端模型在流传输能力,准确性,实时因素(RTF)和延迟方面表现出很大的性能。在本文中,我们呈现U2 ++,U2的增强版本,进一步提高了准确性。 U2 ++的核心思想是在训练中同时使用标签序列的前向和向后信息来学习更丰富的信息,并在解码时结合前向和后向预测以提供更准确的识别结果。我们还提出了一种名为SPECSUB的新数据增强方法,以帮助U2 ++模型更准确和强大。我们的实验表明,与U2相比,U2 ++在训练中显示了更快的收敛,更好地鲁棒性对解码方法,以及U2上的一致5 \%-8 \%字错误率降低增益。在Aishell-1的实验中,我们通过u2 ++实现了一个4.63 \%的字符错误率(cer),其中没有流媒体设置和5.05 \%,具有320ms延迟的流设置。据我们所知,5.05 \%是Aishell-1测试集上的最佳发布的流媒体结果。
translated by 谷歌翻译
端到端(E2E)模型在口语理解(SLU)系统中变得越来越流行,并开始实现基于管道的方法的竞争性能。但是,最近的工作表明,这些模型努力以相同的意图概括为新的措辞,这表明模型无法理解给定话语的语义内容。在这项工作中,我们在E2E-SLU框架内的未标记文本数据中预先训练了在未标记的文本数据上进行预先训练的语言模型,以构建强大的语义表示。同时结合语义信息和声学信息可以增加推理时间,从而在语音助手等应用程序中部署时会导致高潜伏期。我们开发了一个2频道的SLU系统,该系统使用第一张音频的几秒钟的声学信息进行低潜伏期预测,并通过结合语义和声学表示在第二次通过中进行更高质量的预测。我们从先前的2次端到端语音识别系统上的工作中获得了灵感,该系统同时使用审议网络就可以在音频和第一通道假设上进行。所提出的2个通用SLU系统在Fluent Speech命令挑战集和SLURP数据集上优于基于声学的SLU模型,并减少了延迟,从而改善了用户体验。作为ESPNET-SLU工具包的一部分,我们的代码和模型公开可用。
translated by 谷歌翻译