异常值检测是指偏离一般数据分布的数据点的识别。现有的无监督方法经常遭受高计算成本,复杂的绰号调谐以及有限的解释性,特别是在使用大型高维数据集时。为了解决这些问题,我们介绍了一种称为ECOD(基于实证累积分布的异常值检测)的简单而有效的算法,这是由异常值常常出现在分布尾部的“罕见事件”的事实的启发。在简而言之,ECOD首先通过计算数据的各维度的经验累积分布来估计输入数据的基础分布以非参数。 ECOD然后使用这些经验分布来估计每个数据点的每维的尾部概率。最后,ECOD通过跨尺寸聚合估计的尾概率来计算每个数据点的异常值。我们的贡献如下:(1)我们提出了一种名为ECOD的新型异常检测方法,这既是可参数又易于解释; (2)我们在30个基准数据集上进行广泛的实验,在那里我们发现ECOD在准确性,效率和可扩展性方面优于11个最先进的基线; (3)我们释放易于使用和可扩展的(具有分布式支持)Python实现,以实现可访问性和再现性。
translated by 谷歌翻译
我们提出了TOD,这是一个在分布式多GPU机器上进行有效且可扩展的离群检测(OD)的系统。 TOD背后的一个关键思想是将OD应用程序分解为基本张量代数操作。这种分解使TOD能够通过利用硬件和软件中深度学习基础架构的最新进展来加速OD计算。此外,要在有限内存的现代GPU上部署昂贵的OD算法,我们引入了两种关键技术。首先,可证明的量化可以加快OD计算的速度,并通过以较低的精度执行特定的浮点操作来减少其内存足迹,同时证明没有准确的损失。其次,为了利用多个GPU的汇总计算资源和内存能力,我们引入了自动批处理,该批次将OD计算分解为小批次,以便在多个GPU上并行执行。 TOD支持一套全面且多样化的OD算法,例如LOF,PCA和HBOS以及实用程序功能。对真实和合成OD数据集的广泛评估表明,TOD平均比领先的基于CPU的OD系统PYOD快11.6倍(最大加速度为38.9倍),并且比各种GPU底线要处理的数据集更大。值得注意的是,TOD可以直接整合其他OD算法,并提供了将经典OD算法与深度学习方法相结合的统一框架。这些组合产生了无限数量的OD方法,其中许多方法是新颖的,可以很容易地在TOD中进行原型。
translated by 谷歌翻译
异常值是一个事件或观察,其被定义为不同于距群体的不规则距离的异常活动,入侵或可疑数据点。然而,异常事件的定义是主观的,取决于应用程序和域(能量,健康,无线网络等)。重要的是要尽可能仔细地检测异常事件,以避免基础设施故障,因为异常事件可能导致对基础设施的严重损坏。例如,诸如微电网的网络物理系统的攻击可以发起电压或频率不稳定性,从而损坏涉及非常昂贵的修复的智能逆变器。微电网中的不寻常活动可以是机械故障,行为在系统中发生变化,人体或仪器错误或恶意攻击。因此,由于其可变性,异常值检测(OD)是一个不断增长的研究领域。在本章中,我们讨论了使用AI技术的OD方法的进展。为此,通过多个类别引入每个OD模型的基本概念。广泛的OD方法分为六大类:基于统计,基于距离,基于密度的,基于群集的,基于学习的和合奏方法。对于每个类别,我们讨论最近最先进的方法,他们的应用领域和表演。之后,关于对未来研究方向的建议提供了关于各种技术的优缺点和挑战的简要讨论。该调查旨在指导读者更好地了解OD方法的最新进展,以便保证AI。
translated by 谷歌翻译
流媒体数据中对异常的实时检测正在受到越来越多的关注,因为它使我们能够提高警报,预测故障并检测到整个行业的入侵或威胁。然而,很少有人注意比较流媒体数据(即在线算法)的异常检测器的有效性和效率。在本文中,我们介绍了来自不同算法家族(即基于距离,密度,树木或投影)的主要在线检测器的定性合成概述,并突出了其构建,更新和测试检测模型的主要思想。然后,我们对在线检测算法的定量实验评估以及其离线对应物进行了彻底的分析。检测器的行为与不同数据集(即元功能)的特征相关,从而提供了对其性能的元级分析。我们的研究介绍了文献中几个缺失的见解,例如(a)检测器对随机分类器的可靠性以及什么数据集特性使它们随机执行; (b)在线探测器在何种程度上近似离线同行的性能; (c)哪种绘制检测器的策略和更新原始图最适合检测仅在数据集的功能子空间中可见的异常; (d)属于不同算法家族的探测器的有效性与效率之间的权衡是什么; (e)数据集的哪些特定特征产生在线算法以胜过所有其他特征。
translated by 谷歌翻译
考虑到过去几十年中开发的一长串异常检测算法,它们如何在(i)(i)不同级别的监督,(ii)不同类型的异常以及(iii)嘈杂和损坏的数据方面执行?在这项工作中,我们通过(据我们所知)在55个名为Adbench的55个基准数据集中使用30个算法来回答这些关键问题。我们的广泛实验(总共93,654)确定了对监督和异常类型的作用的有意义的见解,并解锁了研究人员在算法选择和设计中的未来方向。借助Adbench,研究人员可以轻松地对数据集(包括我们从自然语言和计算机视觉域的贡献)对现有基线的新提出的方法进行全面和公平的评估。为了促进可访问性和可重复性,我们完全开源的Adbench和相应的结果。
translated by 谷歌翻译
图形离群值检测是一项具有许多应用程序的新兴但至关重要的机器学习任务。尽管近年来算法扩散,但缺乏标准和统一的绩效评估设置限制了它们在现实世界应用中的进步和使用。为了利用差距,我们(据我们所知)(据我们所知)第一个全面的无监督节点离群值检测基准为unod,并带有以下亮点:(1)评估骨架从经典矩阵分解到最新图形神经的骨架的14个方法网络; (2)在现实世界数据集上使用不同类型的注射异常值和自然异常值对方法性能进行基准测试; (3)通过在不同尺度的合成图上使用运行时和GPU存储器使用算法的效率和可扩展性。基于广泛的实验结果的分析,我们讨论了当前渠道方法的利弊,并指出了多个关键和有希望的未来研究方向。
translated by 谷歌翻译
异常的可视化和检测异常(异常值)对许多领域,特别是网络安全的重要性至关重要。在这些领域提出了几种方法,但我们的知识迄今为止,它们都不是在一个相干框架中同时或合作地满足了两个目标。引入了这些方法的可视化方法,用于解释检测算法的输出,而不是用于促进独立视觉检测的数据探测。这是我们的出发点:未经避免,不审视和非分析方法,对Vission(人类流程)和检测(算法)的异常值,分配不变的异常分数(标准化为$ [0,1] $) ,而不是硬二元决定。 Novely的新颖性的主要方面是它将数据转换为新的空间,该空间是在本文中引入的作为邻域累积密度函数(NCDF),其中进行了可视化和检测。在该空间中,异常值非常明显可区分,因此检测算法分配的异常分数在ROC曲线(AUC)下实现了高区域。我们在模拟和最近公布的网络安全数据集中评估了不避免,并将其与其中的三种最成功的异常检测方法进行比较:LOF,IF和FABOD。就AUC而言,不避免几乎是整体胜利者。这篇文章通过提供了对未避免的新理论和实际途径的预测来了解。其中包括设计一种可视化辅助异常检测(Vaad),一种软件通过提供不避免的检测算法(在后发动机中运行),NCDF可视化空间(呈现为绘图)以及其他传统方法在原始特征空间中的可视化,所有这些都在一个交互环境中链接。
translated by 谷歌翻译
We combine the metrics of distance and isolation to develop the \textit{Analytic Isolation and Distance-based Anomaly (AIDA) detection algorithm}. AIDA is the first distance-based method that does not rely on the concept of nearest-neighbours, making it a parameter-free model. Differently from the prevailing literature, in which the isolation metric is always computed via simulations, we show that AIDA admits an analytical expression for the outlier score, providing new insights into the isolation metric. Additionally, we present an anomaly explanation method based on AIDA, the \textit{Tempered Isolation-based eXplanation (TIX)} algorithm, which finds the most relevant outlier features even in data sets with hundreds of dimensions. We test both algorithms on synthetic and empirical data: we show that AIDA is competitive when compared to other state-of-the-art methods, and it is superior in finding outliers hidden in multidimensional feature subspaces. Finally, we illustrate how the TIX algorithm is able to find outliers in multidimensional feature subspaces, and use these explanations to analyze common benchmarks used in anomaly detection.
translated by 谷歌翻译
异常和异常值检测是机器学习中的长期问题。在某些情况下,异常检测容易,例如当从诸如高斯的良好特征的分布中抽出数据时。但是,当数据占据高维空间时,异常检测变得更加困难。我们呈现蛤蜊(聚类学习近似歧管),是任何度量空间中的歧管映射技术。 CLAM以快速分层聚类技术开始,然后根据使用多个几何和拓扑功能所选择的重叠群集,从群集树中引导图表。使用这些图形,我们实现了Chaoda(群集分层异常和异常值检测算法),探索了图形的各种属性及其组成集群以查找异常值。 Chaoda采用了一种基于培训数据集的转移学习形式,并将这些知识应用于不同基数,维度和域的单独测试集。在24个公开可用的数据集上,我们将Chaoda(按衡量ROC AUC)与各种最先进的无监督异常检测算法进行比较。六个数据集用于培训。 Chaoda优于16个剩余的18个数据集的其他方法。 CLAM和Chaoda规模大,高维“大数据”异常检测问题,并贯穿数据集和距离函数。克拉姆和Chaoda的源代码在github上自由地提供https://github.com/uri-abd/clam。
translated by 谷歌翻译
隔离林或“IFOREST”是一种直观且广泛使用的异常检测算法,其遵循一个简单而有效的想法:在给定的数据分布中,如果在某种变量和数据的范围内随机地均匀选择阈值(分割点)根据它们是否更大或小于此阈值,异常值更可能在较小的分区中最终或较小分区划分点。原始程序建议选择变量以在每个步骤中随机均匀地完成变量的变量,但本文表明“集群化”不同的异常值 - 通常比其他人更有趣的异常值 - 可以更多通过应用非均匀 - 随机的变量和/或阈值来容易地识别。比较不同的分割指导标准,发现一些结果导致某些异常值的明显差异更好。
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
无监督的离散化是许多知识发现任务中的关键步骤。使用最小描述长度(MDL)原理局部自适应直方图的一维数据的最先进方法,但研究多维情况的研究要少得多:当前方法一次考虑一个尺寸(如果不是独立的),这导致基于自适应大小的矩形细胞的离散化。不幸的是,这种方法无法充分表征维度之间的依赖性和/或结果,包括由更多的单元(或垃圾箱)组成的离散化。为了解决这个问题,我们提出了一个表达模型类,该类别允许对二维数据进行更灵活的分区。我们扩展了一维情况的艺术状态,以基于归一化最大似然的形式获得模型选择问题。由于我们的模型类的灵活性是以巨大的搜索空间为代价的,因此我们引入了一种名为Palm的启发式算法,该算法将每个维度交替划分,然后使用MDL原理合并相邻区域。合成数据的实验表明,棕榈1)准确地揭示了模型类(即搜索空间)内的地面真相分区,给定的样本量足够大; 2)近似模型类外的各种分区; 3)收敛,与最先进的多元离散方法IPD相比。最后,我们将算法应用于三个空间数据集,我们证明,与内核密度估计(KDE)相比,我们的算法不仅揭示了更详细的密度变化,而且还可以更好地拟合看不见的数据,如日志流利性。
translated by 谷歌翻译
孤立森林(Iforest)近年来已经成为最受欢迎的异常检测器。它迭代地在树结构中执行轴平行的数据空间分区,以将偏差的数据对象与其他数据隔离,并且定义为异常得分的对象的隔离难度。 iForest在流行的数据集基准中显示出有效的性能,但其基于轴平行的线性数据分区无效地处理高维/非线性数据空间中的硬异常,甚至更糟糕的是,它导致了臭名昭著的算法偏见。为人工制品区域分配了出乎意料的较大的异常得分。有几个扩展的Iforest,但它们仍然专注于线性数据分区,无法有效地隔离这些硬异常。本文介绍了iforest,深层隔离森林的新型扩展。我们的方法提供了一种综合的隔离方法,可以在任何大小的子空间上任意将数据任意划分数据,从而有效地避免了线性分区中的算法偏置。此外,它仅需要随机初始化的神经网络(即,我们的方法中不需要优化)来确保分区的自由。这样一来,可以完全利用基于网络的随机表示和基于随机分区的隔离的所需随机性和多样性,以显着增强基于隔离集合的异常检测。此外,我们的方法还提供了数据型 - 敏捷的异常检测解决方案。通过简单地插入功能映射中的随机初始化的神经网络来检测不同类型数据中的异常。大量现实数据集的广泛经验结果表明,我们的模型对基于最新的隔离和基于非异常的异常检测模型有了显着改善。
translated by 谷歌翻译
在几十年来,通过仅评估对象级因子来计算数据中的对象的异常分数时,传统的异常探测器已经忽略了组级因子,无法捕获集体异常值。为缓解此问题,我们提出了一种称为邻居代表(NR)的方法,这些方法使所有现有的异常值探测器能够有效地检测到包括集体异常值,包括集体异常值,同时保持其计算完整性。它通过选择代表性对象来实现这一目标,然后将这些对象进行评分,然后将代表对象的分数应用于其集体对象。在不改变现有探测器的情况下,NR兼容现有的探测器,同时相对于最先进的异常值探测器提高了+ 8%(0.72至0.78 AUC)的现实世界数据集的性能。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
在M维数据点的云中,我们将如何发现,以及排名,单点和群体 - 异常?我们是第一个概括了两个维度的异常检测:第一维度是我们在统一的观点下处理点异常,以及组异常 - 我们将把它们称为广义异常。第二维度不仅可以检测到,而且还可以在可疑顺序中排名,但也排名,异常。异常检测和排名具有许多应用:例如,在癫痫患者的脑电图中,异常可能表明癫痫发作;在计算机网络流量数据中,它可能表示电源故障或DOS / DDOS攻击。我们首先设置一些合理的公理;令人惊讶的是,早期的方法都没有通过所有公理。我们的主要贡献是Gen2Out算法,具有以下理想的性质:(a)所指的原理和声音异常评分,使得探测器的公理组合,(b)倍增,在其检测到,以及排名的级别点和组异常,(c)可扩展,它是快速且可伸缩的,线性输入大小。 (d)有效,关于现实世界癫痫记录(200GB)的实验证明了临床医生证实Gen2Out的有效性。在27个现实世界基准数据集上的实验表明,GEN2OUT检测到准确性的地面真理组,匹配或优于点异常基线基线算法,没有对组异常的竞争,并且在储运机上需要大约2分钟的数据点。
translated by 谷歌翻译
异常解释是确定将样本与正常数据区分开的一组功能的任务,这对于下游(人)决策很重要。现有方法基于特征子集的空间中的光束搜索。它们在计算上很快变得昂贵,因为他们需要为每个功能子集从头开始运行异常检测算法。为了减轻这个问题,我们提出了一种基于总和网络(SPNS)(一类概率电路)的新型离群解释算法。我们的方法利用了SPN中边际推断的障碍,以计算特征子集中的离群分数。通过使用SPNS,可以向后消除而不是通常的前向光束搜索,这是可行的,该搜索不太容易在说明中缺少相关功能,尤其是当功能数量较大时。我们从经验上表明,我们的方法取得了最先进的结果,以实现异常说明,表现优于最近的基于搜索和深度学习的解释方法
translated by 谷歌翻译
该行业许多领域的自动化越来越多地要求为检测异常事件设计有效的机器学习解决方案。随着传感器的普遍存在传感器监测几乎连续地区的复杂基础设施的健康,异常检测现在可以依赖于以非常高的频率进行采样的测量,从而提供了在监视下的现象的非常丰富的代表性。为了充分利用如此收集的信息,观察不能再被视为多变量数据,并且需要一个功能分析方法。本文的目的是探讨近期对实际数据集的功能设置中异常检测技术的性能。在概述最先进的和视觉描述性研究之后,比较各种异常检测方法。虽然功能设置中的异常分类(例如,形状,位置)在文献中记录,但为所识别的异常分配特定类型似乎是一个具有挑战性的任务。因此,鉴于模拟研究中的这些突出显示类型,现有方法的强度和弱点是基准测试。接下来在两个数据集上评估异常检测方法,与飞行中的直升机监测和建筑材料的光谱相同有关。基准分析由从业者的建议指导结束。
translated by 谷歌翻译
给定无监督的离群检测(OD)算法,我们如何在没有任何标签的新数据集上优化其超参数(S)(hp)?在这项工作中,我们解决了针对无监督的OD问题的具有挑战性的超参数优化,并提出了基于元学习的第一种称为HPOD的系统方法。HPOD利用现有的OD基准数据集中大量HP的先前性能,并传输此信息以在没有标签的新数据集上启用HP评估。此外,HPOD适应基于顺序模型的优化(最初是监督的)优化,以有效地识别有希望的HP。广泛的实验表明,HPOD可以与深(例如健壮的自动编码器)和浅层(例如,局部离群因子(LOF)和隔离林(Iforest forest(iforeSt))OD算法一起使用,在离散和连续的HP空间上都超出了大量的基准范围比LOF和Iforest的默认HPS平均提高了58%和66%的性能。
translated by 谷歌翻译