如今有大量在线文档数据源。缺乏结构和格式之间的差异是自动​​从中提取信息的主要困难,这也对其使用和重复使用产生负面影响。在生物医学领域中,出现了DISNET平台,以通过大规模的异质来源为研究人员提供资源,以获取人类疾病网络范围的信息。具体来说,在该领域中,不仅提供从不同来源提取的信息,而且提供支持它的证据至关重要。本文提出了Eboca,该本体论描述了(i)生物医学领域概念及其之间的关联,以及(ii)支持这些关联的证据;目的是提供一个模式来改善该领域中的证据和生物医学关联的出版和描述。已成功评估了本体论,以确保没有错误,建模陷阱,并符合先前定义的功能要求。来自文本的一部分和自动关联提取子集的测试数据已根据所提出的本体论进行了转换,以创建可用于实际场景中的知识图,并且还用于评估所述本体论。
translated by 谷歌翻译
药物发现和发展是一个复杂和昂贵的过程。正在研究机器学习方法,以帮助提高药物发现管道多个阶段的有效性和速度。其中,使用知识图表(kg)的那些在许多任务中具有承诺,包括药物修复,药物毒性预测和靶基因疾病优先级。在药物发现kg中,包括基因,疾病和药物在内的关键因素被认为是实体,而它们之间的关系表示相互作用。但是,为了构建高质量的KG,需要合适的数据。在这篇综述中,我们详细介绍了适用于构建聚焦KGS的药物发现的公开使用来源。我们的目标是帮助引导机器学习和kg从业者对吸毒者发现领域应用新技术,但是谁可能不熟悉相关的数据来源。通过严格的标准选择数据集,根据包含内部包含的主要信息类型,并基于可以提取的信息来进行分类以构建kg。然后,我们对现有的公共药物发现KGS进行了比较分析,并评估了文献中所选择的激励案例研究。此外,我们还提出了众多和与域及其数据集相关的众多挑战和问题,同时突出了关键的未来研究方向。我们希望本综述将激励KGS在药物发现领域的关键和新兴问题中使用。
translated by 谷歌翻译
由于对高效有效的大数据分析解决方案的需求,医疗保健行业中数据分析的合并已取得了重大进展。知识图(KGS)已在该领域证明了效用,并且植根于许多医疗保健应用程序,以提供更好的数据表示和知识推断。但是,由于缺乏代表性的kg施工分类法,该指定领域中的几种现有方法不足和劣等。本文是第一个提供综合分类法和鸟类对医疗kg建筑的眼光的看法。此外,还对与各种医疗保健背景相关的学术工作中最新的技术进行了彻底的检查。这些技术是根据用于知识提取的方法,知识库和来源的类型以及合并评估协议的方法进行了严格评估的。最后,报道和讨论了文献中的一些研究发现和现有问题,为这个充满活力的地区开放了未来研究的视野。
translated by 谷歌翻译
自然语言处理(NLP)是一个人工智能领域,它应用信息技术来处理人类语言,在一定程度上理解并在各种应用中使用它。在过去的几年中,该领域已经迅速发展,现在采用了深层神经网络的现代变体来从大型文本语料库中提取相关模式。这项工作的主要目的是调查NLP在药理学领域的最新使用。正如我们的工作所表明的那样,NLP是药理学高度相关的信息提取和处理方法。它已被广泛使用,从智能搜索到成千上万的医疗文件到在社交媒体中找到对抗性药物相互作用的痕迹。我们将覆盖范围分为五个类别,以调查现代NLP方法论,常见的任务,相关的文本数据,知识库和有用的编程库。我们将这五个类别分为适当的子类别,描述其主要属性和想法,并以表格形式进行总结。最终的调查介绍了该领域的全面概述,对从业者和感兴趣的观察者有用。
translated by 谷歌翻译
当植物天然产物与药物共容纳时,就会发生药代动力学天然产物 - 药物相互作用(NPDIS)。了解NPDI的机制是防止不良事件的关键。我们构建了一个知识图框架NP-KG,作为迈向药代动力学NPDIS的计算发现的一步。 NP-KG是一个具有生物医学本体论,链接数据和科学文献的全文,由表型知识翻译框架和语义关系提取系统,SEMREP和集成网络和动态推理组成的构建的科学文献的全文。通过路径搜索和元路径发现对药代动力学绿茶和kratom-prug相互作用的案例研究评估NP-KG,以确定与地面真实数据相比的一致性和矛盾信息。完全集成的NP-KG由745,512个节点和7,249,576个边缘组成。 NP-KG的评估导致了一致(绿茶的38.98%,kratom的50%),矛盾(绿茶的15.25%,21.43%,Kratom的21.43%),同等和矛盾的(15.25%)(21.43%,21.43%,21.43% kratom)信息。几种声称的NPDI的潜在药代动力学机制,包括绿茶 - 茶氧化烯,绿茶 - 纳多洛尔,Kratom-Midazolam,Kratom-Quetiapine和Kratom-Venlafaxine相互作用,与已出版的文献一致。 NP-KG是第一个将生物医学本体论与专注于天然产品的科学文献的全文相结合的公斤。我们证明了NP-KG在鉴定涉及酶,转运蛋白和药物的药代动力学相互作用的应用。我们设想NP-KG将有助于改善人机合作,以指导研究人员将来对药代动力学NPDIS进行研究。 NP-KG框架可在https://doi.org/10.5281/zenodo.6814507和https://github.com/sanyabt/np-kg上公开获得。
translated by 谷歌翻译
通用数据模型解决了标准化电子健康记录(EHR)数据的许多挑战,但无法将其集成深度表型所需的资源。开放的生物学和生物医学本体论(OBO)铸造本体论提供了可用于生物学知识的语义计算表示,并能够整合多种生物医学数据。但是,将EHR数据映射到OBO Foundry本体论需要大量的手动策展和域专业知识。我们介绍了一个框架,用于将观察性医学成果合作伙伴关系(OMOP)标准词汇介绍给OBO铸造本体。使用此框架,我们制作了92,367条条件,8,615种药物成分和10,673个测量结果的映射。域专家验证了映射准确性,并且在24家医院进行检查时,映射覆盖了99%的条件和药物成分和68%的测量结果。最后,我们证明OMOP2OBO映射可以帮助系统地识别可能受益于基因检测的未诊断罕见病患者。
translated by 谷歌翻译
该药物发现​​和开发过程是一个漫长而昂贵的过程,每次药物平均耗资超过10亿美元,需要10 - 15年的时间。为了减少在整个过程中的高水平流失量,在最近十年中,越来越多地将机器学习方法应用于药物发现和发育的各个阶段,尤其是在最早鉴定可药物疾病基因的阶段。在本文中,我们开发了一种新的张量分解模型,以预测用于治疗疾病的潜在药物靶标(基因或蛋白质)。我们创建了一个三维数据张量,该数据张量由1,048个基因靶标,860个疾病和230,0111111111111111111111111111111的证据属性和临床结果,并使用从开放式目标和药物数据库中提取的数据组成。我们用从药物发现的知识图中学到的基因目标表示丰富了数据,并应用了我们提出的方法来预测看不见的基因靶标和疾病对的临床结果。我们设计了三种评估策略来衡量预测性能,并将几个常用的机器学习分类器与贝叶斯矩阵和张量分解方法进行了基准测试。结果表明,合并知识图嵌入可显着提高预测准确性,并与密集的神经网络一起训练张量分解优于所有其他基线。总而言之,我们的框架结合了两种积极研究的机器学习方法,用于疾病目标识别,即张量分解和知识图表示学习,这可能是在数据驱动的药物发现中进一步探索的有希望的途径。
translated by 谷歌翻译
各种网络的部署(例如,事物互联网(IOT)和移动网络),数据库(例如,营养表和食品组成数据库)和社交媒体(例如,Instagram和Twitter)产生大量的多型食品数据,这在食品科学和工业中起着关键作用。然而,由于众所周知的数据协调问题,这些多源食品数据显示为信息孤岛,导致难以充分利用这些食物数据。食物知识图表提供了统一和标准化的概念术语及其结构形式的关系,因此可以将食物信息孤单转换为更可重复使用的全球数量数字连接的食物互联网以使各种应用有益。据我们所知,这是食品科学与工业中食品知识图表的第一个全面审查。我们首先提供知识图表的简要介绍,然后主要从食物分类,食品本体到食品知识图表的进展。粮食知识图表的代表性应用将在新的配方开发,食品可追溯性,食物数据可视化,个性化饮食推荐,食品搜索和质询回答,视觉食品对象识别,食品机械智能制造方面来概述。我们还讨论了该领域的未来方向,例如食品供应链系统和人类健康的食品知识图,这应该得到进一步的研究。他们的巨大潜力将吸引更多的研究努力,将食物知识图形应用于食品科学和工业领域。
translated by 谷歌翻译
生物医学研究正在以这种指数速度增长,科学家,研究人员和从业者不再能够应对该领域发表的文献的数量。文献中提出的知识需要以这种方式系统化,可以轻松找到声明和假设,访问和验证。知识图可以为文献提供这样的语义知识表示框架。然而,为了构建知识图形,有必要以生物医学实体之间的关系形式提取知识并使两个实体和关系类型进行正常化。在本文中,我们展示并比较了少数基于规则和基于机器学习的(天真的贝叶斯,随机森林作为传统机器学习方法和T5基础的示例,作为现代深层学习的示例)可扩展关系从生物医学中提取的方法集成到知识图中的文献。我们研究了如何为不平衡和相当小的数据集进行弹性,显示T5模型,由于其在大型C4数据集以及不平衡数据上进行预培训,因此T5模型处理得好的小型数据集。最佳执行模型是T5模型在平衡数据上进行微调,报告F1分数为0.88。
translated by 谷歌翻译
尽管编码了大量丰富和有价值的数据,但现有的数据来源主要是独立创建的,这是他们整合的重大挑战。映射语言,例如RML和R2RML,促进了将Meta-Data和将数据集成到知识图中的过程的声明性规范。除了在数据源和统一模式中表达对应关系之外,映射规则还可以包括知识提取功能。组合映射规则和函数表示强大的形式主义,以指定流水管以透明地将数据集成到知识图中。令人惊讶的是,这些形式主义没有完全调整,并且通过将ad-hoc程序执行到预处理和集成数据来创建许多知识图表。在本文中,我们提出了Eablock,一种方法将实体对齐(EA)集成为RML映射规则的一部分。 eAblock包括执行从文本属性的实体识别的功能块,并将识别的实体链接到Wikidata,DBPedia和域特定词库中的相应资源,例如UML。 EABLOCK提供可靠性和有效的技术来评估功能并转移映射以促进其在任何符合RML标准的发动机中的应用。我们有经验评估的eAblock性能,结果表明eAblock加快了需要实体识别和链接在符合最先进的RML标准的发动机的知识图形创建管道。 Eablock还通过Github存储库(https:/github.com/sdm-tib/eablock)和doi(https://doi.org/10.5281/zenodo.5779777)作为工具被公开可用作工具。
translated by 谷歌翻译
庞大的科学出版物呈现出越来越大的挑战,找到与给定的研究问题相关的那些,并在其基础上做出明智的决定。如果不使用自动化工具,这变得非常困难。在这里,一个可能的改进区域是根据其主题自动分类出版物摘要。这项工作介绍了一种新颖的知识基础的出色出版物分类器。该方法侧重于实现可扩展性和对其他域的容易适应性。在非常苛刻的食品安全领域,分类速度和准确度被证明是令人满意的。需要进一步发展和评估该方法,因为所提出的方法显示出很大的潜力。
translated by 谷歌翻译
近年来,数据科学已经显着发展。数据分析和采矿过程成为可用数据集的所有行业的常规。已收集,策划,存储和用于提取知识的大量数据存储库。这变得司空见惯。随后,我们直接从数据或通过给定域中的专家提取大量知识。现在的挑战是如何利用以前因高效决策过程而闻名的所有这些知识。直到最近,通过多年的研究获得的许多知识都存储在静态知识库或本体中,而从数据挖掘研究中获得的更多样化和动态知识并没有集中和始终如一地管理。在这项研究中,我们提出了一个称为基于本体的知识图的新型模型,以代表和存储农作物耕作中数据挖掘的结果(知识),以建立,维护和丰富知识发现过程。提出的模型包括六个主要集合:概念,属性,关系,转换,实例和状态。该模型是动态的,可以随时促进知识的访问,更新和开发。本文还提出了用于处理这种基于知识模型的体系结构。系统体系结构包括知识建模,提取,评估,发布和开发。该系统已被实施并用于农业管理和监测。事实证明,它非常有效,并且有望扩展到其他领域。
translated by 谷歌翻译
生物医学文献中的自动关系提取(RE)对于研究和现实世界中的许多下游文本挖掘应用至关重要。但是,用于生物医学的大多数现有基准测试数据集仅关注句子级别的单一类型(例如蛋白质 - 蛋白质相互作用)的关系,从而极大地限制了生物医学中RE系统的开发。在这项工作中,我们首先审查了常用的名称实体识别(NER)和RE数据集。然后,我们提出了Biored,这是一种具有多种实体类型(例如,基因/蛋白质,疾病,化学)和关系对(例如,基因 - 疾病;化学化学化学化学)的首个生物医学RE语料库,在文档水平上,在一组600个PubMed摘要中。此外,我们将每个关系标记为描述一种新颖的发现或先前已知的背景知识,使自动化算法能够区分新颖和背景信息。我们通过基准在NER和RE任务上对几种现有的最新方法(包括基于BERT的模型)进行基准测试来评估Biored的实用性。我们的结果表明,尽管现有方法可以在NER任务上达到高性能(F-评分为89.3%),但重新任务的改进空间很大,尤其是在提取新颖的关系时(F-评分为47.7%)。我们的实验还表明,如此丰富的数据集可以成功地促进生物医学更准确,高效和健壮的RE系统的开发。 Biored数据集和注释指南可在https://ftp.ncbi.nlm.nih.gov/pub/lu/biored/中免费获得。
translated by 谷歌翻译
子痫前期是孕产妇和胎儿发病率和死亡率的主要原因。目前,先兆子痫的唯一明确治疗方法是胎盘的递送,这对于疾病的发病机理至关重要。已经广泛地进行了鉴定出差异表达的基因(DEGS),已经进行了广泛的先兆子痫对人胎盘的转录分析。使用无偏见的测定法确定了DEG,但是,在实验上研究DEG的决策受到许多因素的偏见,导致许多DEGS仍未被评估。一组与疾病在实验上相关的DEG,但与文献中的疾病尚无相关性,被称为无知组。先兆子痫具有广泛的科学文献,大量的DEG数据库,只有一种确定的治疗方法。促进基于知识的分析的工具能够将许多来源的不同数据结合起来,以提出基本的行动机制,可能是支持发现并提高我们对这种疾病的理解的宝贵资源。在这项工作中,我们证明了如何使用生物医学知识图(KG)来识别新型的先兆子痫分子机制。现有的开源生物医学资源和公开可用的高通量转录分析数据用于识别和注释当前未经资助的先兆子痫相关的DEG的功能。使用文本挖掘方法从PubMed摘要中鉴定出与先兆子痫相关的基因。文本媒介和荟萃分析衍生的列表的相对补体被确定为未经投票的前启示性脱位相关的DEG(n = 445),即先前的无知组。使用KG研究相关的DEG,揭示了53种新型临床相关和生物学作用的机械关联。
translated by 谷歌翻译
国家推进翻译科学中心(NCATS)生物医学数据翻译(译者)旨在衰减翻译科学家面临的问题。翻译是一种多功能架构,包括六个自主中继代理(ARAS)和八个知识提供商(KPS)。在本文中,我们介绍了解释剂(XARA)的设计,是一种基于案例的ARA,通过访问多个KPS,排名结果并解释结果排名来回答生物医学查询。解释性代理设计有五个知识集装箱,包括四个原始知识容器和一个用于解释的额外容器 - 解释容器。解释容器是基于案例的,并设计有自己的知识容器。
translated by 谷歌翻译
叙事制图是一项学科,研究了故事和地图的交织性质。然而,叙述的传统地理化技术经常遇到几个突出的挑战,包括数据采集和一体化挑战和语义挑战。为了解决这些挑战,在本文中,我们提出了具有知识图表(KGS)的叙事制图的想法。首先,要解决数据采集和集成挑战,我们开发了一组基于KG的地理学工具箱,以允许用户从GISYstem内搜索和检索来自集成跨域知识图中的相关数据以获得来自GISYSTEM的叙述映射。在此工具的帮助下,来自KG的检索数据以GIS格式直接实现,该格式已准备好用于空间分析和映射。两种用例 - 麦哲伦的远征和第二次世界大战 - 被提出展示了这种方法的有效性。与此同时,从这种方法中确定了几个限制,例如数据不完整,语义不相容,以及地理化的语义挑战。对于后面的两个限制,我们为叙事制图提出了一个模块化本体,它将地图内容(地图内容模块)和地理化过程(制图模块)正式化。我们证明,通过代表KGS(本体)中的地图内容和地理化过程,我们可以实现数据可重用性和叙事制图的地图再现性。
translated by 谷歌翻译
专门的基于变形金刚的模型(例如生物Biobert和Biomegatron)适用于基于公共可用的生物医学语料库的生物医学领域。因此,它们有可能编码大规模的生物学知识。我们研究了这些模型中生物学知识的编码和表示,及其支持癌症精度医学推断的潜在实用性 - 即,对基因组改变的临床意义的解释。我们比较不同变压器基线的性能;我们使用探测来确定针对不同实体的编码的一致性;我们使用聚类方法来比较和对比基因,变异,药物和疾病的嵌入的内部特性。我们表明,这些模型确实确实编码了生物学知识,尽管其中一些模型在针对特定任务的微调中丢失了。最后,我们分析了模型在数据集中的偏见和失衡方面的行为。
translated by 谷歌翻译
背景:获得医疗服务在很大程度上取决于资源分配,例如医疗设施的地理分布。然而,这些数据通常仅限于国家官方文件,不可公开提供。尽管某些医疗设施的数据可以作为网络上的语义资源访问,但它的建模并不一致,并且尚未集成到完整,开放和专业的存储库中。这项工作着重于生成全球医疗设施的全面语义数据集,其中包含有关此类设施地理位置的广泛信息。结果:为此,我们收集,对齐并链接了可能存在医疗设施信息的各种开源数据库。这项工作使我们能够沿着各个方面评估每个数据源,例如完整性,正确性和与其他来源相互联系,当前知识表示技术的所有关键方面。结论:我们的贡献直接受益于生物医学和健康领域(患者,医疗保健专业人员,公司,监管机构和研究人员)的利益相关者,他们现在将更好地概述获得医疗设施的访问和分配。
translated by 谷歌翻译
自动问题应答(QA)系统的目的是以时间有效的方式向用户查询提供答案。通常在数据库(或知识库)或通常被称为语料库的文件集合中找到答案。在过去的几十年里,收购知识的扩散,因此生物医学领域的新科学文章一直是指数增长。因此,即使对于领域专家,也难以跟踪域中的所有信息。随着商业搜索引擎的改进,用户可以在某些情况下键入其查询并获得最相关的一小组文档,以及在某些情况下从文档中的相关片段。但是,手动查找所需信息或答案可能仍然令人疑惑和耗时。这需要开发高效的QA系统,该系统旨在为用户提供精确和精确的答案提供了生物医学领域的自然语言问题。在本文中,我们介绍了用于开发普通域QA系统的基本方法,然后彻底调查生物医学QA系统的不同方面,包括使用结构化数据库和文本集合的基准数据集和几种提出的方​​法。我们还探讨了当前系统的局限性,并探索潜在的途径以获得进一步的进步。
translated by 谷歌翻译
我们根据生态毒理学风险评估中使用的主要数据来源创建了知识图表。我们已经将这种知识图表应用于风险评估中的重要任务,即化学效果预测。我们已经评估了在该预测任务的各种几何,分解和卷积模型中嵌入模型的九个知识图形嵌入模型。我们表明,使用知识图形嵌入可以提高与神经网络的效果预测的准确性。此外,我们已经实现了一种微调架构,它将知识图形嵌入到效果预测任务中,并导致更好的性能。最后,我们评估知识图形嵌入模型的某些特征,以阐明各个模型性能。
translated by 谷歌翻译