来自脑电图(EEG)和磁脑电图(MEG)的非侵入性电生理学信号的定量分析归结为鉴定时间模式,例如诱发反应,神经振荡的短暂爆发,以及闪烁的数据清洁。几项作品表明,这些模式可以通过无监督的方式有效提取,例如使用卷积词典学习。这导致基于事件的数据描述。鉴于这些事件,一个自然的问题是估算某些认知任务和实验操作如何调节其发生的情况。为了解决这个问题,我们提出了一种点过程方法。虽然过去曾在神经科学中使用点过程,尤其是用于单细胞记录(尖峰列车),但诸如卷积词典学习之类的技术使它们可以基于EEG/MEG信号来适应人类研究。我们开发了一个新型的统计点过程模型驱动的时间点过程(DRIPP) - 点过程模型的强度函数与一组与刺激事件相对应的点过程链接。我们得出了一种快速而有原则的期望最大化(EM)算法,以估计该模型的参数。模拟显示,可以从足够长的信号中识别模型参数。标准MEG数据集的结果表明,我们的方法论揭示了与事件相关的神经反应,并引起了诱导和分离,并隔离了非任务特定的时间模式。
translated by 谷歌翻译
我们在动态环境中跟踪多个物体的能力使我们能够执行日常任务,例如驾驶,运动运动和在拥挤的购物中心行走。尽管有关多个对象跟踪(MOT)任务的三十年文献,但基本和交织的神经机制仍然知之甚少。在这里,我们研究了脑电图(EEG)神经相关性及其在3D-MOT任务的三个阶段的变化,即识别,跟踪和回忆。我们记录了24名参与者的脑电图活动,而他们执行了3D-MOT任务,其中有1、2或3个目标,其中一些试验被横向进行,有些则没有。我们观察到从跟踪到回忆时,集中注意力与工作记忆过程之间似乎是一种交接。我们的发现表明,在跟踪过程中,从额叶区域的三角洲和theta频率有很强的抑制作用,随后在召回过程中对这些相同频率的激活强烈(重新)激活。我们的结果还显示了在识别阶段和召回阶段的对侧延迟活性(CDA),但在跟踪过程中没有。
translated by 谷歌翻译
这项工作引入了一种新颖的多变量时间点过程,部分均值行为泊松(PMBP)过程,可以利用以将多变量霍克斯过程适合部分间隔删除的数据,该数据包括在尺寸和间隔子集上的事件时间戳的混合中组成的数据。 - 委员会互补尺寸的事件计数。首先,我们通过其条件强度定义PMBP过程,并导出子临界性的规律性条件。我们展示了鹰过程和MBP过程(Rizoiu等人)是PMBP过程的特殊情况。其次,我们提供了能够计算PMBP过程的条件强度和采样事件历史的数字方案。第三,我们通过使用合成和现实世界数据集来证明PMBP过程的适用性:我们测试PMBP过程的能力,以恢复多变量霍克参数给出鹰过程的样本事件历史。接下来,我们在YouTube流行预测任务上评估PMBP过程,并表明它优于当前最先进的鹰强度过程(Rizoiu等人。(2017b))。最后,在Covid19的策划数据集上,关于国家样本的Covid19每日案例计数和Covid19相关的新闻文章,我们展示了PMBP拟合参数上的聚类使各国的分类能够分类案件和新闻的国家级互动报告。
translated by 谷歌翻译
对未标记的声发射(AE)数据的解释经典依赖于通用聚类方法。虽然过去已经使用了几种外部标准来选择这些算法的超参数,但很少有研究关注能够应对AE数据特异性的聚类方法中专用目标功能的发展。我们研究了如何在混合模型中,尤其是高斯混合模型(GMM)中明确表示簇的爆炸。通过修改此类模型的内部标准,我们提出了第一种聚类方法,能够通过预期最大化过程估算的参数提供有关何时发生簇的信息(ONESET),它们如何生长(动力学)及其通过它们的生长水平及其通过其激活水平时间。这种新的目标函数可容纳AE信号的连续时间戳,从而适应其发生的顺序。该方法称为GMMSEQ,经过实验验证,以表征振动下螺栓结构中的松动现象。与来自五个实验活动的原始流数据数据的三种标准聚类方法的比较表明,GMMSEQ不仅提供了有关簇时间线的有用定性信息,而且还显示出在群集表征方面更好的性能。鉴于制定开放的声学倡议并根据公平原则,数据集和代码可用于复制本文的研究。
translated by 谷歌翻译
科学家经常使用观察时间序列数据来研究从气候变化到民间冲突再到大脑活动的复杂自然过程。但是对这些数据的回归分析通常假定简单的动态。深度学习的最新进展使从语音理解到核物理学再到竞争性游戏的复杂过程模型的表现实现了令人震惊的改进。但是深度学习通常不用于科学分析。在这里,我们通过证明可以使用深度学习,不仅可以模仿,而且可以分析复杂的过程,在保留可解释性的同时提供灵活的功能近似。我们的方法 - 连续时间反向逆转回归神经网络(CDRNN) - 放宽标准简化的假设(例如,线性,平稳性和同质性)对于许多自然系统来说是不可信的,并且可能会严重影响数据的解释。我们评估CDRNNS对人类语言处理,这是一个具有复杂连续动态的领域。我们证明了行为和神经影像数据中预测可能性的显着改善,我们表明CDRNN可以在探索性分析中灵活发现新型模式,在确认分析中对可能的混杂性提供强有力的控制,并打开否则就可以使用这些问题来进行研究,这些问题否则就可以使用这些问题来进行研究,而这些问题否则就可以使用这些问题进行研究,而这些问题否则就可以使用这些问题进行研究。观察数据。
translated by 谷歌翻译
神经影像动物和超越的几个问题需要对多任务稀疏分层回归模型参数的推断。示例包括M / EEG逆问题,用于基于任务的FMRI分析的神经编码模型,以及气候或CPU和GPU的温度监测。在这些域中,要推断的模型参数和测量噪声都可以表现出复杂的时空结构。现有工作要么忽略时间结构,要么导致计算苛刻的推论方案。克服这些限制,我们设计了一种新颖的柔性等级贝叶斯框架,其中模型参数和噪声的时空动态被建模为具有Kronecker产品协方差结构。我们的框架中的推断是基于大大化最小化优化,并有保证的收敛属性。我们高效的算法利用了时间自传矩阵的内在riemannian几何学。对于Toeplitz矩阵描述的静止动力学,采用了循环嵌入的理论。我们证明了Convex边界属性并导出了结果算法的更新规则。在来自M / EEG的合成和真实神经数据上,我们证明了我们的方法导致性能提高。
translated by 谷歌翻译
脑电图(EEG)录音通常被伪影污染。已经开发了各种方法来消除或削弱伪影的影响。然而,大多数人都依赖于先前的分析经验。在这里,我们提出了一个深入的学习框架,以将神经信号和伪像在嵌入空间中分离并重建被称为DeepSeparator的去噪信号。 DeepSeparator采用编码器来提取和放大原始EEG中的特征,称为分解器的模块以提取趋势,检测和抑制伪像和解码器以重建去噪信号。此外,DeepSeparator可以提取伪像,这在很大程度上增加了模型解释性。通过半合成的EEG数据集和实际任务相关的EEG数据集进行了所提出的方法,建议DeepSepater在EoG和EMG伪像去除中占据了传统模型。 DeepSeparator可以扩展到多通道EEG和任何长度的数据。它可能激励深入学习的EEG去噪的未来发展和应用。 DeepSeparator的代码可在https://github.com/ncclabsustech/deepseparator上获得。
translated by 谷歌翻译
在许多环境环境中的风险管理需要了解驱动极端事件的机制。量化这种风险的有用指标是响应变量的极端分位数,该变量是基于描述气候,生物圈和环境状态的预测变量的。通常,这些分位数位于可观察数据的范围之内,因此,为了估算,需要在回归框架内规范参数极值模型。在这种情况下,经典方法利用预测变量和响应变量之间的线性或加性关系,并在其预测能力或计算效率中受苦;此外,它们的简单性不太可能捕获导致极端野火创造的真正复杂结构。在本文中,我们提出了一个新的方法学框架,用于使用人工中性网络执行极端分位回归,该网络能够捕获复杂的非线性关系并很好地扩展到高维数据。神经网络的“黑匣子”性质意味着它们缺乏从业者通常会喜欢的可解释性的理想特征。因此,我们将线性和加法模型的各个方面与深度学习相结合,以创建可解释的神经网络,这些神经网络可用于统计推断,但保留了高预测准确性。为了补充这种方法,我们进一步提出了一个新颖的点过程模型,以克服与广义极值分布类别相关的有限的下端问题。我们的统一框架的功效在具有高维预测器集的美国野火数据上说明了,我们说明了基于线性和基于样条的回归技术的预测性能的大幅改进。
translated by 谷歌翻译
在过去的几年中,深度学习用于脑电图(EEG)分类任务一直在迅速增长,但其应用程序受到EEG数据集相对较小的限制。数据扩展包括在培训过程中人为地增加数据集的大小,它一直是在计算机视觉或语音等应用程序中获得最新性能的关键要素。尽管文献中已经提出了一些脑电图数据的增强转换,但它们对跨任务的绩效的积极影响仍然难以捉摸。在这项工作中,我们提出了对主要现有脑电图增强的统一和详尽的分析,该分析在常见的实验环境中进行了比较。我们的结果强调了为睡眠阶段分类和大脑计算机界面界面的最佳数据增强,在某些情况下显示预测功率改善大于10%。
translated by 谷歌翻译
The access to activity of subcortical structures offers unique opportunity for building intention dependent brain-computer interfaces, renders abundant options for exploring a broad range of cognitive phenomena in the realm of affective neuroscience including complex decision making processes and the eternal free-will dilemma and facilitates diagnostics of a range of neurological deceases. So far this was possible only using bulky, expensive and immobile fMRI equipment. Here we present an interpretable domain grounded solution to recover the activity of several subcortical regions from the multichannel EEG data and demonstrate up to 60% correlation between the actual subcortical blood oxygenation level dependent sBOLD signal and its EEG-derived twin. Then, using the novel and theoretically justified weight interpretation methodology we recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei. The described results not only pave the road towards wearable subcortical activity scanners but also showcase an automatic knowledge discovery process facilitated by deep learning technology in combination with an interpretable domain constrained architecture and the appropriate downstream task.
translated by 谷歌翻译
我们展示了一个新的数据集和基准,其目的是在大脑活动和眼球运动的交叉口中推进研究。我们的数据集EEGEYENET包括从三种不同实验范式中收集的356个不同受试者的同时脑电图(EEG)和眼睛跟踪(ET)录像。使用此数据集,我们还提出了一种评估EEG测量的凝视预测的基准。基准由三个任务组成,难度越来越高:左右,角度幅度和绝对位置。我们在该基准测试中运行大量实验,以便根据经典机器学习模型和大型神经网络提供实心基线。我们释放了我们的完整代码和数据,并提供了一种简单且易于使用的界面来评估新方法。
translated by 谷歌翻译
苏黎世认知语言处理语料库(Zuco)提供了来自两种读取范例,正常读取和特定任务读数的眼跟踪和脑电图信号。我们分析了机器学习方法是否能够使用眼睛跟踪和EEG功能对这两个任务进行分类。我们使用聚合的句子级别功能以及细粒度的单词级别来实现模型。我们在主题内和交叉对象评估方案中测试模型。所有模型都在Zuco 1.0和Zuco 2.0数据子集上进行测试,其特征在于不同的记录程序,因此允许不同的概括水平。最后,我们提供了一系列的控制实验,以更详细地分析结果。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
Neyman-Scott processes (NSPs) are point process models that generate clusters of points in time or space. They are natural models for a wide range of phenomena, ranging from neural spike trains to document streams. The clustering property is achieved via a doubly stochastic formulation: first, a set of latent events is drawn from a Poisson process; then, each latent event generates a set of observed data points according to another Poisson process. This construction is similar to Bayesian nonparametric mixture models like the Dirichlet process mixture model (DPMM) in that the number of latent events (i.e. clusters) is a random variable, but the point process formulation makes the NSP especially well suited to modeling spatiotemporal data. While many specialized algorithms have been developed for DPMMs, comparatively fewer works have focused on inference in NSPs. Here, we present novel connections between NSPs and DPMMs, with the key link being a third class of Bayesian mixture models called mixture of finite mixture models (MFMMs). Leveraging this connection, we adapt the standard collapsed Gibbs sampling algorithm for DPMMs to enable scalable Bayesian inference on NSP models. We demonstrate the potential of Neyman-Scott processes on a variety of applications including sequence detection in neural spike trains and event detection in document streams.
translated by 谷歌翻译
瞬态现象在多个尺度上协调大脑活性方面起着关键作用,但是,它们的潜在机制在很大程度上仍然未知。因此,神经数据科学的一个关键挑战是表征这些事件期间的网络交互。使用结构性因果模型的形式主义及其图形表示,我们研究了基于信息理论的理论和经验特性,基于信息理论的因果力量测量在反复自发的瞬态事件的背景下。在这种环境中显示了转移熵和动态因果强度的局限性之后,我们引入了一种新颖的度量,相对动态的因果强度,并为其益处提供了理论和经验支持。这些方法应用于模拟和实验记录的神经时间序列,并与我们当前对潜在脑电路的理解相吻合。
translated by 谷歌翻译
衡量心理工作量的主要原因是量化执行任务以预测人类绩效的认知成本。不幸的是,一种评估具有一般适用性的心理工作量的方法。这项研究提出了一种新型的自我监督方法,用于从脑电图数据中使用深度学习和持续的大脑率,即认知激活的指标,而无需人类声明性知识,从而从脑电图数据进行了精神负荷建模。该方法是可培训的卷积复发性神经网络,该神经网络可通过空间保留脑电图数据的光谱地形图训练,以适合大脑速率变量。发现证明了卷积层从脑电图数据中学习有意义的高级表示的能力,因为受试者内模型的测试平均绝对百分比误差平均为11%。尽管确实提高了其准确性,但增加了用于处理高级表示序列的长期期内存储层并不重要。发现指出,认知激活的高级高水平表示存在准稳定的块,因为它们可以通过卷积诱导,并且似乎随着时间的流逝而彼此依赖,从而直观地与大脑反应的非平稳性质相匹配。跨主体模型,从越来越多的参与者的数据诱导,因此包含更多的可变性,获得了与受试者内模型相似的精度。这突出了人们在人们之间诱发的高级表示的潜在普遍性,这表明存在非依赖于受试者的认知激活模式。这项研究通过为学者提供一种用于心理工作负载建模的新型计算方法来促进知识的体系,该方法旨在通常适用,不依赖于支持可复制性和可复制性的临时人工制作的模型。
translated by 谷歌翻译
我们为时间事件数据提出了一个新的稀疏Granger-Causal学习框架。我们专注于一种称为Hawkes流程的特定点过程。我们首先指出,霍克斯工艺的大多数现有稀疏因果学习算法在最大似然估计中都具有奇异性。结果,它们的稀疏溶液只能显示为数值伪像。在本文中,我们提出了一个基于基于基数规范化的霍克斯过程的数学定义明确的稀疏因果学习框架,该过程可以纠正现有方法的病理问题。我们利用提出的算法来完成实例因果事件分析的任务,其中稀疏性起着至关重要的作用。我们使用两个真实用例验证了所提出的框架,一个来自电网,另一个来自云数据中心管理域。
translated by 谷歌翻译
对医疗保健监控的远程工具的需求从未如此明显。摄像机测量生命体征利用成像装置通过分析人体的图像来计算生理变化。建立光学,机器学习,计算机视觉和医学的进步这些技术以来的数码相机的发明以来已经显着进展。本文介绍了对生理生命体征的相机测量综合调查,描述了它们可以测量的重要标志和实现所做的计算技术。我涵盖了临床和非临床应用以及这些应用需要克服的挑战,以便从概念上推进。最后,我描述了对研究社区可用的当前资源(数据集和代码),并提供了一个全面的网页(https://cameravitals.github.io/),其中包含这些资源的链接以及其中引用的所有文件的分类列表文章。
translated by 谷歌翻译
Mixtures of von Mises-Fisher distributions can be used to cluster data on the unit hypersphere. This is particularly adapted for high-dimensional directional data such as texts. We propose in this article to estimate a von Mises mixture using a l 1 penalized likelihood. This leads to sparse prototypes that improve clustering interpretability. We introduce an expectation-maximisation (EM) algorithm for this estimation and explore the trade-off between the sparsity term and the likelihood one with a path following algorithm. The model's behaviour is studied on simulated data and, we show the advantages of the approach on real data benchmark. We also introduce a new data set on financial reports and exhibit the benefits of our method for exploratory analysis.
translated by 谷歌翻译
机器学习渗透到许多行业,这为公司带来了新的利益来源。然而,在人寿保险行业中,机器学习在实践中并未被广泛使用,因为在过去几年中,统计模型表明了它们的风险评估效率。因此,保险公司可能面临评估人工智能价值的困难。随着时间的流逝,专注于人寿保险行业的修改突出了将机器学习用于保险公司的利益以及通过释放数据价值带来的利益。本文回顾了传统的生存建模方法论,并通过机器学习技术扩展了它们。它指出了与常规机器学习模型的差异,并强调了特定实现在与机器学习模型家族中面对审查数据的重要性。在本文的补充中,已经开发了Python库。已经调整了不同的开源机器学习算法,以适应人寿保险数据的特殊性,即检查和截断。此类模型可以轻松地从该SCOR库中应用,以准确地模拟人寿保险风险。
translated by 谷歌翻译