The standard closed-set domain adaptation approaches seek to mitigate distribution discrepancies between two domains under the constraint of both sharing identical label sets. However, in realistic scenarios, finding an optimal source domain with identical label space is a challenging task. Partial domain adaptation alleviates this problem of procuring a labeled dataset with identical label space assumptions and addresses a more practical scenario where the source label set subsumes the target label set. This, however, presents a few additional obstacles during adaptation. Samples with categories private to the source domain thwart relevant knowledge transfer and degrade model performance. In this work, we try to address these issues by coupling variational information and adversarial learning with a pseudo-labeling technique to enforce class distribution alignment and minimize the transfer of superfluous information from the source samples. The experimental findings in numerous cross-domain classification tasks demonstrate that the proposed technique delivers superior and comparable accuracy to existing methods.
translated by 谷歌翻译
与标准闭合域的适应任务相反,部分域适应设置通过放松相同的标签集假设来迎合现实情况。但是,源标签集集成了目标标签集的事实,因此引入了一些额外的障碍,因为私人源类别样本的培训阻止了相关的知识转移并误导了分类过程。为了减轻这些问题,我们设计了一种机制,用于策略选择高度自信的目标样本,这对于估算班级的体重所必需的必不可少的机制。此外,我们通过将实现紧凑型和不同类别分布的过程与对抗性目标结合过程来捕获类歧视和域的不变特征。对众多跨域分类任务的实验发现证明了所提出的技术具有比现有方法具有卓越和可比精度的潜力。
translated by 谷歌翻译
域的适应性(DA)旨在将知识从标记的源域中学习的知识转移到未标记或标记较小但相关的目标域的知识。理想情况下,源和目标分布应彼此平等地对齐,以实现公正的知识转移。但是,由于源和目标域中注释数据的数量之间存在显着不平衡,通常只有目标分布与源域保持一致,从而使不必要的源特定知识适应目标域,即偏置域的适应性。为了解决此问题,在这项工作中,我们通过对基于对抗性的DA方法进行建模来对歧视器的不确定性进行建模,以优化无偏见转移。我们理论上分析了DA中提出的无偏可传递性学习方法的有效性。此外,为了减轻注释数据不平衡的影响,我们利用了目标域中未标记样品的伪标签选择的估计不确定性,这有助于实现更好的边际和条件分布在域之间的分布。对各种DA基准数据集的广泛实验结果表明,可以轻松地将所提出的方法纳入各种基于对抗性的DA方法中,从而实现最新的性能。
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
We propose a novel unsupervised domain adaptation framework based on domain-specific batch normalization in deep neural networks. We aim to adapt to both domains by specializing batch normalization layers in convolutional neural networks while allowing them to share all other model parameters, which is realized by a twostage algorithm. In the first stage, we estimate pseudolabels for the examples in the target domain using an external unsupervised domain adaptation algorithm-for example, MSTN [27] or CPUA [14]-integrating the proposed domain-specific batch normalization. The second stage learns the final models using a multi-task classification loss for the source and target domains. Note that the two domains have separate batch normalization layers in both stages. Our framework can be easily incorporated into the domain adaptation techniques based on deep neural networks with batch normalization layers. We also present that our approach can be extended to the problem with multiple source domains. The proposed algorithm is evaluated on multiple benchmark datasets and achieves the state-of-theart accuracy in the standard setting and the multi-source domain adaption scenario.
translated by 谷歌翻译
Domain adaptation enables the learner to safely generalize into novel environments by mitigating domain shifts across distributions. Previous works may not effectively uncover the underlying reasons that would lead to the drastic model degradation on the target task. In this paper, we empirically reveal that the erratic discrimination of the target domain mainly stems from its much smaller feature norms with respect to that of the source domain. To this end, we propose a novel parameter-free Adaptive Feature Norm approach. We demonstrate that progressively adapting the feature norms of the two domains to a large range of values can result in significant transfer gains, implying that those task-specific features with larger norms are more transferable. Our method successfully unifies the computation of both standard and partial domain adaptation with more robustness against the negative transfer issue. Without bells and whistles but a few lines of code, our method substantially lifts the performance on the target task and exceeds state-of-the-arts by a large margin (11.5% on Office-Home [45] and 17.1% on VisDA2017 [31]). We hope our simple yet effective approach will shed some light on the future research of transfer learning. Code is available at https://github.com/jihanyang/AFN .
translated by 谷歌翻译
虽然在许多域内生成并提供了大量的未标记数据,但对视觉数据的自动理解的需求高于以往任何时候。大多数现有机器学习模型通常依赖于大量标记的训练数据来实现高性能。不幸的是,在现实世界的应用中,不能满足这种要求。标签的数量有限,手动注释数据昂贵且耗时。通常需要将知识从现有标记域传输到新域。但是,模型性能因域之间的差异(域移位或数据集偏差)而劣化。为了克服注释的负担,域适应(DA)旨在在将知识从一个域转移到另一个类似但不同的域中时减轻域移位问题。无监督的DA(UDA)处理标记的源域和未标记的目标域。 UDA的主要目标是减少标记的源数据和未标记的目标数据之间的域差异,并在培训期间在两个域中学习域不变的表示。在本文中,我们首先定义UDA问题。其次,我们从传统方法和基于深度学习的方法中概述了不同类别的UDA的最先进的方法。最后,我们收集常用的基准数据集和UDA最先进方法的报告结果对视觉识别问题。
translated by 谷歌翻译
无监督域适应的最新进步已经表明,通过提取域不变表示来缓解域分流可以显着改善模型的概括到未标记的数据域。然而,现有方法未能有效保留私有的标签缺失域的表示,这可能会对概括产生不利影响。在本文中,我们提出了一种保留这种表示的方法,使得未标记域的潜在分布可以代表域不变的功能和私有到未标记域的各个特征。特别地,我们证明,在减轻域分歧的同时最大化未标记的域和其潜空间之间的相互信息可以实现这种保存。我们也理论上和经验验证的验证验证,保留私有到未标记的域的表示是重要的,并且是跨域泛化的必要性。我们的方法优于几个公共数据集上的最先进的方法。
translated by 谷歌翻译
无监督的域适应(UDA)旨在将标记的源分布与未标记的目标分布对齐,以获取域不变预测模型。然而,众所周知的UDA方法的应用在半监督域适应(SSDA)方案中不完全概括,其中来自目标域的少数标记的样本可用。在本文中,我们提出了一种用于半监督域适应(CLDA)的简单对比学习框架,该框架试图在SSDA中弥合标记和未标记的目标分布与源极和未标记的目标分布之间的域间差距之间的域间隙。我们建议采用类明智的对比学学习来降低原始(输入图像)和强大增强的未标记目标图像之间的域间间隙和实例级对比度对准,以最小化域内差异。我们已经凭经验表明,这两个模块相互补充,以实现卓越的性能。在三个众所周知的域适应基准数据集中的实验即Domainnet,Office-Home和Office31展示了我们方法的有效性。 CLDA在所有上述数据集上实现最先进的结果。
translated by 谷歌翻译
作为对数据有效使用的研究,多源无监督的域适应性将知识从带有标记数据的多个源域转移到了未标记的目标域。但是,目标域中不同域和嘈杂的伪标签之间的分布差异都导致多源无监督域适应方法的性能瓶颈。鉴于此,我们提出了一种将注意力驱动的领域融合和耐噪声学习(ADNT)整合到上述两个问题的方法。首先,我们建立了相反的注意结构,以在特征和诱导域运动之间执行信息。通过这种方法,当域差异降低时,特征的可区分性也可以显着提高。其次,基于无监督的域适应训练的特征,我们设计了自适应的反向横向熵损失,该损失可以直接对伪标签的产生施加约束。最后,结合了这两种方法,几个基准的实验结果进一步验证了我们提出的ADNT的有效性,并证明了优于最新方法的性能。
translated by 谷歌翻译
通用域适应性(UNIDA)是一种一般无监督的域适应设置,它解决了自适应中的域和标签变化。它的主要挑战在于如何在未共享或未知类中识别目标样本。以前的方法通常努力描绘样本“置信度”以及拒绝未知数的阈值,并使跨域共享类的特征分布对齐。但是,仍然很难预先指定“信心”标准和阈值,这些标准和阈值适应各种实际任务,并且对未知数的错误预测进一步导致了共享类中特征的错误对准。在本文中,我们提出了一种新的UNIDA方法,该方法具有分类器悖论(UACP)的自适应未知身份验证,考虑到具有矛盾预测的样品可能是未知的,属于源类别。在UACP中,一个复合分类器与两种类型的预测变量共同设计。也就是说,多类(MC)预测器将样品分类为多个源类之一,而二进制单VS-ALL(OVA)预测器进一步验证了MC预测器的预测。验证失败或悖论的样品被鉴定为未知数。此外,在输出空间中进行了隐式域对齐,而不是共享类别的特征对齐,使跨域的样本共享相同的决策边界,尽管特征差异都具有相同的决策边界。经验结果验证了开放式UDA和通用UDA设置下的UACP。
translated by 谷歌翻译
Adversarial learning has been embedded into deep networks to learn disentangled and transferable representations for domain adaptation. Existing adversarial domain adaptation methods may not effectively align different domains of multimodal distributions native in classification problems. In this paper, we present conditional adversarial domain adaptation, a principled framework that conditions the adversarial adaptation models on discriminative information conveyed in the classifier predictions. Conditional domain adversarial networks (CDANs) are designed with two novel conditioning strategies: multilinear conditioning that captures the crosscovariance between feature representations and classifier predictions to improve the discriminability, and entropy conditioning that controls the uncertainty of classifier predictions to guarantee the transferability. With theoretical guarantees and a few lines of codes, the approach has exceeded state-of-the-art results on five datasets.
translated by 谷歌翻译
域适应(DA)旨在将知识从标签富裕但异构的域转移到标签恐慌域,这减轻了标签努力并吸引了相当大的关注。与以前的方法不同,重点是学习域中的特征表示,一些最近的方法存在通用半监督学习(SSL)技术,直接将它们应用于DA任务,甚至实现竞争性能。最受欢迎的SSL技术之一是伪标记,可通过标记数据训练的分类器为每个未标记数据分配伪标签。但是,它忽略了DA问题的分布偏移,并且不可避免地偏置为源数据。要解决此问题,我们提出了一个名为辅助目标域导向的分类器(ATDOC)的新伪标签框架。 ATDOC通过为目标数据引入辅助分类器来缓解分类器偏置,以提高伪标签的质量。具体地,我们使用内存机制并开发两种类型的非参数分类器,即最近的质心分类器和邻域聚合,而不引入任何其他网络参数。尽管在伪分类目标中具有简单性,但具有邻域聚集的ATDOC显着优于域对齐技术和现有的SSL技术,以及甚至瘢痕标记的SSL任务。
translated by 谷歌翻译
学习目标域中的未知样本(不存在于源类中)对于无监督域适应(UDA)相当重要。存在两个典型的UDA方案,即开放式和开放式集合,后者假定目标域中并非所有源类都显示在内。但是,大多数先前的方法都是为一个UDA场景而设计的,并且始终在其他UDA方案上表现差。此外,它们还需要在适应过程中标记的源数据,限制其在数据隐私敏感应用中的可用性。为了解决这些问题,本文提出了一种通用模型适应(UMAD)框架,其处理了UDA方案,而无需访问源数据,也不是关于域之间类别的类别的知识。具体而言,我们的目标是使用优雅设计的双头分类器来学习源模型,并将其提供给目标域。在适应期间,我们开发了一种信息丰富的一致性分数,以帮助区分从已知样品中的未知样本。为了在目标域中实现双边适应,我们进一步最大化了局部化的相互信息,以将已知的样本与源分类器对齐,并采用熵丢失,以便分别推动远离源分类边界的未知样本。开放式和开放式的UDA方案的实验表明,umad作为无需访问源数据的统一方法,展示与最先进的数据相关方法的可比性。
translated by 谷歌翻译
无监督域适配利用标记的源域中丰富的信息来模拟未标记的目标域。现有方法尝试对齐跨域分布。然而,两个域的对准的统计表示并不良好解决。在本文中,我们提出了深度最小二乘对准(DLSA)来估计通过参数化线性模型来估计潜在空间中的两个域的分布。我们通过最小化拟合线和截距差异之间的角度以及进一步学习域不变特征,进一步开发边缘和条件适应损失以减少域差异。广泛的实验表明,所提出的DLSA模型在对准域分布和优于最先进的方法方面有效。
translated by 谷歌翻译
半监督域适应(SSDA)是一种具有挑战性的问题,需要克服1)以朝向域的较差的数据和2)分布换档的方法。不幸的是,由于培训数据偏差朝标标样本训练,域适应(DA)和半监督学习(SSL)方法的简单组合通常无法解决这两个目的。在本文中,我们介绍了一种自适应结构学习方法,以规范SSL和DA的合作。灵感来自多视图学习,我们建议的框架由共享特征编码器网络和两个分类器网络组成,用于涉及矛盾的目的。其中,其中一个分类器被应用于组目标特征以提高级别的密度,扩大了鲁棒代表学习的分类集群的间隙。同时,其他分类器作为符号器,试图散射源功能以增强决策边界的平滑度。目标聚类和源扩展的迭代使目标特征成为相应源点的扩张边界内的封闭良好。对于跨域特征对齐和部分标记的数据学习的联合地址,我们应用最大平均差异(MMD)距离最小化和自培训(ST)将矛盾结构投影成共享视图以进行可靠的最终决定。对标准SSDA基准的实验结果包括Domainnet和Office-Home,展示了我们对最先进的方法的方法的准确性和稳健性。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain. Prior UDA methods typically require to access the source data when learning to adapt the model, making them risky and inefficient for decentralized private data. This work tackles a practical setting where only a trained source model is available and investigates how we can effectively utilize such a model without source data to solve UDA problems. We propose a simple yet generic representation learning framework, named Source HypOthesis Transfer (SHOT). SHOT freezes the classifier module (hypothesis) of the source model and learns the target-specific feature extraction module by exploiting both information maximization and selfsupervised pseudo-labeling to implicitly align representations from the target domains to the source hypothesis. To verify its versatility, we evaluate SHOT in a variety of adaptation cases including closed-set, partial-set, and open-set domain adaptation. Experiments indicate that SHOT yields state-of-the-art results among multiple domain adaptation benchmarks.
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从标记的源域传输到未标记的目标域。传统上,基于子空间的方法为此问题形成了一类重要的解决方案。尽管他们的数学优雅和易腐烂性,但这些方法通常被发现在产生具有复杂的现实世界数据集的领域不变的功能时无效。由于近期具有深度网络的代表学习的最新进展,本文重新访问了UDA的子空间对齐,提出了一种新的适应算法,始终如一地导致改进的泛化。与现有的基于对抗培训的DA方法相比,我们的方法隔离了特征学习和分配对准步骤,并利用主要辅助优化策略来有效地平衡域不契约的目标和模型保真度。在提供目标数据和计算要求的显着降低的同时,基于子空间的DA竞争性,有时甚至优于几种标准UDA基准测试的最先进的方法。此外,子空间对准导致本质上定期的模型,即使在具有挑战性的部分DA设置中,也表现出强大的泛化。最后,我们的UDA框架的设计本身支持对测试时间的新目标域的逐步适应,而无需从头开始重新检测模型。总之,由强大的特征学习者和有效的优化策略提供支持,我们将基于子空间的DA建立为可视识别的高效方法。
translated by 谷歌翻译
在图像分类中,获得足够的标签通常昂贵且耗时。为了解决这个问题,域适应通常提供有吸引力的选择,给出了来自类似性质但不同域的大量标记数据。现有方法主要对准单个结构提取的表示的分布,并且表示可以仅包含部分信息,例如,仅包含部分饱和度,亮度和色调信息。在这一行中,我们提出了多代表性适应,这可以大大提高跨域图像分类的分类精度,并且特别旨在对准由名为Inception Adaption Adationation模块(IAM)提取的多个表示的分布。基于此,我们呈现多色自适应网络(MRAN)来通过多表示对准完成跨域图像分类任务,该任向性可以捕获来自不同方面的信息。此外,我们扩展了最大的平均差异(MMD)来计算适应损耗。我们的方法可以通过扩展具有IAM的大多数前进模型来轻松实现,并且网络可以通过反向传播有效地培训。在三个基准图像数据集上进行的实验证明了备的有效性。代码已在https://github.com/easezyc/deep-transfer -learning上获得。
translated by 谷歌翻译
对抗性学习策略在处理单源域适应(DA)问题时表现出显着的性能,并且最近已应用于多源DA(MDA)问题。虽然大多数现有的MDA策略依赖于多个域歧视员设置,但其对潜伏空间表示的影响已经不知识。在这里,我们采用了一种信息 - 理论方法来识别和解决MDA上多个域鉴别器的潜在不利影响:域歧视信息的解体,有限的计算可扩展性以及培训期间损失梯度的大方差。我们在信息正规化的背景下通过情况进行对抗性DA来检查上述问题。这还提供了使用单一和统一域鉴别器的理论正当理由。基于这个想法,我们实施了一种名为多源信息正规化适应网络(MIAN)的新型神经结构。大规模实验表明,尽管其结构简洁,可靠,可显着优于其他最先进的方法。
translated by 谷歌翻译