量化是在嵌入式系统或手机上部署训练有素的DNN模型时,是最应用的深神经网络(DNN)压缩策略之一。这是由于其对广泛的应用和情况的简单性和适应性,而不是特定的人工智能(AI)加速器和编译器,这些加速器和编译器通常仅用于某些特定的硬件(例如Google Coral Edge TPU)。随着对量化的需求不断增长,确保该策略的可靠性成为一个关键挑战。传统的测试方法收集越来越多的真实数据以进行更好的评估,通常是不切实际的,因为输入空间的尺寸很大,并且原始DNN及其量化的对应物之间的相似性很高。结果,高级评估策略已变得至关重要。在本文中,我们提出了Diverget,这是一个基于搜索的测试框架,用于量化评估。 Diverget定义了变质关系的空间,该空间模拟了输入上的自然扭曲。然后,它最佳地探索了这些关系,以揭示不同算术精度的DNN之间的分歧。我们评估了应用于高光谱遥感图像的最先进的DNN上的Diverget的性能。我们选择了遥感DNN,因为它们越来越多地部署在诸如气候变化研究和天文学之类的关键领域中的边缘(例如,高级无人机)。我们的结果表明,Diverget成功地挑战了已建立的量化技术的鲁棒性,以防止自然变化的数据,并胜过其最新的并发,Diffchaser,其成功率(平均)是四倍。
translated by 谷歌翻译
在飞机系统绩效评估的背景下,深度学习技术可以快速从实验测量中推断模型,其详细的系统知识比基于物理的建模通常所需的详细知识。但是,这种廉价的模型开发也带来了有关模型可信度的新挑战。这项工作提出了一种新颖的方法,即物理学引导的对抗机学习(ML),从而提高了对模型物理一致性的信心。首先,该方法执行了物理引导的对抗测试阶段,以搜索测试输入,以显示行为系统不一致,同时仍落在可预见的操作条件范围内。然后,它进行了物理知识的对抗训练,以通过迭代降低先前未经证实的反描述的不需要的输出偏差来教授与系统相关的物理领域的模型。对两个飞机系统绩效模型的经验评估显示了我们对抗性ML方法在暴露两种模型的身体不一致方面的有效性,并提高其与物理领域知识一致的倾向。
translated by 谷歌翻译
深度神经网络(DNN)已广泛用于许多领域,包括图像处理,医疗诊断和自主驾驶。然而,DNN可以表现出可能导致严重错误的错误行为,特别是在安全关键系统中使用时。灵感来自传统软件系统的测试技术,研究人员提出了神经元覆盖标准,作为比喻源代码覆盖率,以指导DNN模型的测试。尽管对DNN覆盖范围非常积极的研究,但最近的几项研究质疑此类标准在指导DNN测试中的有用性。此外,从实际的角度来看,这些标准是白盒,因为它们需要访问DNN模型的内部或培训数据,这在许多情况下不可行或方便。在本文中,我们将黑盒输入分集度量调查为白盒覆盖标准的替代品。为此,我们首先以受控方式选择和适应三个分集指标和学习它们在输入集中测量实际分集的能力。然后,我们使用两个数据集和三个DNN模型分析其与故障检测的统计关联。我们进一步比较了与最先进的白盒覆盖标准的多样性。我们的实验表明,依赖于测试输入集中嵌入的图像特征的多样性是比覆盖标准更可靠的指示,以有效地指导DNN的测试。事实上,我们发现我们选定的黑盒子分集度量的一个远远超出了现有的覆盖范围,以便在发生故障泄露能力和计算时间方面。结果还确认了疑似,最先进的覆盖度量指标不足以指导测试输入集的构建,以检测尽可能多的自然输入的故障。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
深度神经网络(DNN)应用越来越多地成为我们日常生活的一部分,从医疗应用到自动车辆。 DNN的传统验证依赖于准确度措施,然而,对抗示例的存在突出了这些准确度措施的局限性,特别是当DNN集成到安全关键系统中时提出担忧。在本文中,我们呈现HOMRS,一种通过自动构建从一组初始变质关系构建小型优化的高阶变质关系来提振变质测试的方法。 Homrs的骨干是一个多目标搜索;它利用传统系统测试中绘制的想法,例如代码覆盖,测试用例,路径分集以及输入验证。我们将HOMRS应用于MNIST / LENET和SVHN / VGG,我们报告了它的证据表明它建立了一个小而有效的高阶变换,概括到输入数据分布很好。此外,与诸如DeepXplore的类似的生成技术相比,我们表明我们的分发的方法更有效,从不确定量化的观点产生有效的变换,同时通过利用方法的泛化能力来实现更少的计算时间。
translated by 谷歌翻译
Deep learning (DL) systems are increasingly deployed in safety-and security-critical domains including self-driving cars and malware detection, where the correctness and predictability of a system's behavior for corner case inputs are of great importance. Existing DL testing depends heavily on manually labeled data and therefore often fails to expose erroneous behaviors for rare inputs.We design, implement, and evaluate DeepXplore, the first whitebox framework for systematically testing real-world DL systems. First, we introduce neuron coverage for systematically measuring the parts of a DL system exercised by test inputs. Next, we leverage multiple DL systems with similar functionality as cross-referencing oracles to avoid manual checking. Finally, we demonstrate how finding inputs for DL systems that both trigger many differential behaviors and achieve high neuron coverage can be represented as a joint optimization problem and solved efficiently using gradientbased search techniques.DeepXplore efficiently finds thousands of incorrect corner case behaviors (e.g., self-driving cars crashing into guard rails and malware masquerading as benign software) in stateof-the-art DL models with thousands of neurons trained on five popular datasets including ImageNet and Udacity selfdriving challenge data. For all tested DL models, on average, DeepXplore generated one test input demonstrating incorrect behavior within one second while running only on a commodity laptop. We further show that the test inputs generated by DeepXplore can also be used to retrain the corresponding DL model to improve the model's accuracy by up to 3%.
translated by 谷歌翻译
Deep neural networks (DNNs) have demonstrated superior performance over classical machine learning to support many features in safety-critical systems. Although DNNs are now widely used in such systems (e.g., self driving cars), there is limited progress regarding automated support for functional safety analysis in DNN-based systems. For example, the identification of root causes of errors, to enable both risk analysis and DNN retraining, remains an open problem. In this paper, we propose SAFE, a black-box approach to automatically characterize the root causes of DNN errors. SAFE relies on a transfer learning model pre-trained on ImageNet to extract the features from error-inducing images. It then applies a density-based clustering algorithm to detect arbitrary shaped clusters of images modeling plausible causes of error. Last, clusters are used to effectively retrain and improve the DNN. The black-box nature of SAFE is motivated by our objective not to require changes or even access to the DNN internals to facilitate adoption.Experimental results show the superior ability of SAFE in identifying different root causes of DNN errors based on case studies in the automotive domain. It also yields significant improvements in DNN accuracy after retraining, while saving significant execution time and memory when compared to alternatives. CCS Concepts: • Software and its engineering → Software defect analysis; • Computing methodologies → Machine learning.
translated by 谷歌翻译
Testing Deep Learning (DL) based systems inherently requires large and representative test sets to evaluate whether DL systems generalise beyond their training datasets. Diverse Test Input Generators (TIGs) have been proposed to produce artificial inputs that expose issues of the DL systems by triggering misbehaviours. Unfortunately, such generated inputs may be invalid, i.e., not recognisable as part of the input domain, thus providing an unreliable quality assessment. Automated validators can ease the burden of manually checking the validity of inputs for human testers, although input validity is a concept difficult to formalise and, thus, automate. In this paper, we investigate to what extent TIGs can generate valid inputs, according to both automated and human validators. We conduct a large empirical study, involving 2 different automated validators, 220 human assessors, 5 different TIGs and 3 classification tasks. Our results show that 84% artificially generated inputs are valid, according to automated validators, but their expected label is not always preserved. Automated validators reach a good consensus with humans (78% accuracy), but still have limitations when dealing with feature-rich datasets.
translated by 谷歌翻译
机器学习算法和深度神经网络在几种感知和控制任务中的卓越性能正在推动该行业在安全关键应用中采用这种技术,作为自治机器人和自动驾驶车辆。然而,目前,需要解决几个问题,以使深入学习方法更可靠,可预测,安全,防止对抗性攻击。虽然已经提出了几种方法来提高深度神经网络的可信度,但大多数都是针对特定类的对抗示例量身定制的,因此未能检测到其他角落案件或不安全的输入,这些输入大量偏离训练样本。本文介绍了基于覆盖范式的轻量级监控架构,以增强针对不同不安全输入的模型鲁棒性。特别是,在用于评估多种检测逻辑的架构中提出并测试了四种覆盖分析方法。实验结果表明,该方法有效地检测强大的对抗性示例和分销外输入,引入有限的执行时间和内存要求。
translated by 谷歌翻译
深度神经网络(DNNS)的快速和广泛采用呼吁测试其行为的方法,许多测试方法成功地揭示了DNN的不当行为。但是,相对尚不清楚启示录后可以采取什么措施来纠正这种行为,因为重新研究涉及昂贵的数据收集,并且不能保证解决基本问题。本文介绍了Arachne,这是一种针对DNNS的新型程序修复技术,该技术使用其输入输出对直接维修DNN作为规范。 Arachne局部性的神经权重可以生成有效的斑块并使用差分进化来优化局部权重并纠正不当行为。使用不同基准的实证研究表明,Arachne可以固定DNN的特定错误分类,而无需显着降低一般准确性。平均而言,Arachne产生的补丁概括至未见不良行为的61.3%,而通过最先进的DNN修复技术的斑块仅概括为10.2%,有时甚至是没有,而无数次数则超过了Arachne。我们还表明,Arachne可以通过对性别分类模型来解决公平问题。最后,我们成功地将Arachne应用于文本情感模型,以表明它的普遍性超出了卷积神经网络。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
当在安全 - 关键系统中使用深层神经网络(DNN)时,工程师应确定在测试过程中观察到的与故障(即错误输出)相关的安全风险。对于DNN处理图像,工程师在视觉上检查所有引起故障的图像以确定它们之间的共同特征。这种特征对应于危害触发事件(例如,低照明),这是安全分析的重要输入。尽管内容丰富,但这种活动却昂贵且容易出错。为了支持此类安全分析实践,我们提出了SEDE,该技术可为失败,现实世界图像中的共同点生成可读的描述,并通过有效的再培训改善DNN。 SEDE利用了通常用于网络物理系统的模拟器的可用性。它依靠遗传算法来驱动模拟器来生成与测试集中诱导失败的现实世界图像相似的图像。然后,它采用规则学习算法来得出以模拟器参数值捕获共同点的表达式。然后,派生表达式用于生成其他图像以重新训练和改进DNN。随着DNN执行车载传感任务,SEDE成功地表征了导致DNN精度下降的危险触发事件。此外,SEDE启用了重新培训,从而导致DNN准确性的显着提高,最高18个百分点。
translated by 谷歌翻译
In recent years, image and video delivery systems have begun integrating deep learning super-resolution (SR) approaches, leveraging their unprecedented visual enhancement capabilities while reducing reliance on networking conditions. Nevertheless, deploying these solutions on mobile devices still remains an active challenge as SR models are excessively demanding with respect to workload and memory footprint. Despite recent progress on on-device SR frameworks, existing systems either penalize visual quality, lead to excessive energy consumption or make inefficient use of the available resources. This work presents NAWQ-SR, a novel framework for the efficient on-device execution of SR models. Through a novel hybrid-precision quantization technique and a runtime neural image codec, NAWQ-SR exploits the multi-precision capabilities of modern mobile NPUs in order to minimize latency, while meeting user-specified quality constraints. Moreover, NAWQ-SR selectively adapts the arithmetic precision at run time to equip the SR DNN's layers with wider representational power, improving visual quality beyond what was previously possible on NPUs. Altogether, NAWQ-SR achieves an average speedup of 7.9x, 3x and 1.91x over the state-of-the-art on-device SR systems that use heterogeneous processors (MobiSR), CPU (SplitSR) and NPU (XLSR), respectively. Furthermore, NAWQ-SR delivers an average of 3.2x speedup and 0.39 dB higher PSNR over status-quo INT8 NPU designs, but most importantly mitigates the negative effects of quantization on visual quality, setting a new state-of-the-art in the attainable quality of NPU-based SR.
translated by 谷歌翻译
我们开发DeepTraversal,一个反馈驱动的框架来测试DNN。DeepTraversal首先启动离线阶段,以将各种形式的媒体数据映射到歧管。然后,在其在线测试阶段,DeameTraversal遍历准备的歧管空间以最大化DNN覆盖标准和触发预测误差。在我们的评估中,使用DNN执行各种任务(例如,分类,自动驾驶,机器翻译)和不同类型(图像,音频,文本)的媒体数据。DeepTraversal表现出比现有的方法相对于流行DNN覆盖标准的方法更好,并且它可以发现更大的数量和更高质量的错误触发输入。经过测试的DNN模型,经过深度干扰的调查结果,实现更好的准确性
translated by 谷歌翻译
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by adversarial examples that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a new strategy, feature squeezing, that can be used to harden DNN models by detecting adversarial examples. Feature squeezing reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. By comparing a DNN model's prediction on the original input with that on squeezed inputs, feature squeezing detects adversarial examples with high accuracy and few false positives.This paper explores two feature squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple strategies are inexpensive and complementary to other defenses, and can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks.
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
本文总结了DNN测试标准的八种设计要求,考虑到分配性能和实际问题。然后,我们提出了一种新的标准NLC,满足所有这些设计要求。NLC将单个DNN层视为基本计算单元(而不是单个神经元),并捕获神经元输出分布的四个关键特征。因此,NLC表示为神经覆盖,这更准确地描述神经网络如何通过近似分布而不是神经元来理解输入。我们证明NLC与跨多个任务(分类和发电)和数据格式(图像和文本)的测试套件的多样性相关。它发现DNN预测误差的能力是有前途的。由NLC引导的测试输入突变导致暴露错误行为的更高质量和多样性。
translated by 谷歌翻译
本文介绍了更深层的扩展版本,这是一种基于搜索的仿真集成测试解决方案,该解决方案生成了用于测试基于神经网络的巷道式泳道系统的检测失败测试方案。在新提出的版本中,我们使用了一组新的生物启发的搜索算法,遗传算法(GA),$({\ mu}+{\ lambda})$和$({\ mu},{\ mu},{\ lambda}),{\ lambda}) $进化策略(ES)和粒子群优化(PSO),利用了针对用于对测试场景进行建模的演示模型量身定制的优质人口种子和特定于域的交叉和突变操作。为了证明更深层次的新测试生成器的功能,我们就SBST 2021的网络物理系统测试竞赛中的五个参与工具进行了经验评估和比较。我们的评估显示了新提出的测试更深层次的发电机不仅代表了先前版本的可观改进,而且还被证明是有效和有效地引发相当数量的不同故障的测试方案,用于测试ML驱动的车道保存系统。在有限的测试时间预算,高目标故障严重性和严格的速度限制限制下,它们可以在促进测试方案多样性的同时触发几次失败。
translated by 谷歌翻译
背景:机器学习(ML)可以实现有效的自动测试生成。目的:我们表征了新兴研究,检查测试实践,研究人员目标,应用的ML技术,评估和挑战。方法:我们对97个出版物的样本进行系统文献综述。结果:ML生成系统,GUI,单位,性能和组合测试的输入或改善现有生成方法的性能。 ML还用于生成测试判决,基于属性的和预期的输出序列。经常基于神经网络和强化学习的监督学习通常是基于Q学习的 - 很普遍,并且某些出版物还采用了无监督或半监督的学习。使用传统的测试指标和与ML相关的指标(例如准确性)评估(半/非 - )监督方法,而经常使用与奖励功能相关的测试指标来评估强化学习。结论:工作到尽头表现出巨大的希望,但是在培训数据,再探术,可伸缩性,评估复杂性,所采用的ML算法以及如何应用 - 基准和可复制性方面存在公开挑战。我们的发现可以作为该领域研究人员的路线图和灵感。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译