在本文中,我们提出了GT-GDA,这是一种分布式优化方法来解决表单的鞍点问题:$ \ min _ {\ Mathbf {x}}} \ max _ {\ Mathbf {y Mathbf {y}}} \ {f( 。 $,其中函数$ g(\ cdot)$,$ h(\ cdot)$,以及耦合矩阵$ \ overline {p} $的耦合矩阵{p} $是在强烈连接的节点网络上分发的。 GT-GDA是一种使用梯度跟踪来消除节点之间异质数据分布引起的差异的一阶方法。在最通用的形式中,GT-GDA包括与本地耦合矩阵的共识,以达到最佳(独特的)鞍点,但是,以增加通信为代价。为了避免这种情况,我们提出了一个更有效的变体GT-GDA-LITE,该变体不会引起额外的交流并在各种情况下分析其收敛性。我们表明,当$ g(\ cdot)$平滑且凸,$ h(\ cdot)$平稳且强烈凸时,GT-GDA线性收敛到唯一的鞍点解决方案,并且全局耦合矩阵$ \ overline {p } $具有完整的列等级。我们进一步表征了GT-GDA表现出与网络拓扑无关的收敛行为的制度。接下来,我们显示GT-GDA的线性收敛到围绕唯一鞍点的错误,当耦合成本$ {\ langle \ mathbf y,\ overline {p} \ mathbf x \ rangle} $是零时为零。所有节点,或当$ g(\ cdot)$和$ h(\ cdot)$是二次时。数值实验说明了GT-GDA和GT-GDA-LITE对多种应用的收敛属性和重要性。
translated by 谷歌翻译
我们通过两种类型 - 主/工人(因此集中)架构(因此集中)架构和网格化(因此分散)网络,研究(强)凸起(强)凸起(强)凸起的鞍点问题(SPPS)的解决方案方法。由于统计数据相似度或其他,假设每个节点处的本地功能是相似的。我们为求解SPP的相当一般算法奠定了较低的复杂性界限。我们表明,在$ \ omega \ big(\ delta \ cdot \ delta / \ mu \ cdot \ log(1 / varepsilon)\ big)$ rounds over over over exoptimally $ \ epsilon> 0 $ over over master / workers网络通信,其中$ \ delta> 0 $测量本地功能的相似性,$ \ mu $是它们的强凸起常数,$ \ delta $是网络的直径。较低的通信复杂性绑定在网状网络上读取$ \ omega \ big(1 / {\ sqrt {\ rho}} \ cdot {\ delta} / {\ mu} \ cdot \ log(1 / varepsilon)\ big)$ ,$ \ rho $是用于邻近节点之间通信的八卦矩阵的(归一化)EIGENGAP。然后,我们提出算法与较低限制的网络(最多为日志因子)匹配。我们评估所提出的算法对强大的逻辑回归问题的有效性。
translated by 谷歌翻译
我们考虑分散的优化问题,其中许多代理通过在基础通信图上交换来最大程度地减少其本地功能的平均值。具体而言,我们将自己置于异步模型中,其中只有一个随机部分在每次迭代时执行计算,而信息交换可以在所有节点之间进行,并以不对称的方式进行。对于此设置,我们提出了一种算法,该算法结合了整个网络上梯度跟踪和差异的差异。这使每个节点能够跟踪目标函数梯度的平均值。我们的理论分析表明,在预期混合矩阵的轻度连通性条件下,当局部目标函数强烈凸面时,算法会汇聚。特别是,我们的结果不需要混合矩阵是双随机的。在实验中,我们研究了一种广播机制,该机制将信息从计算节点传输到其邻居,并确认我们方法在合成和现实世界数据集上的线性收敛性。
translated by 谷歌翻译
我们研究了多智能经纪增强学习的政策评估问题,其中一组代理商,共同观察到的国家和私人本地行动和奖励,协作,以通过连接的无向网络通过本地计算和通信学习给定策略的价值函数。各种大型多种代理系统中出现此问题,包括电网,智能交通系统,无线传感器网络和多代理机器人。当状态动作空间的尺寸大时,广泛使用具有线性函数近似的时间差异学习。在本文中,我们开发了一种新的分布式时间差异学习算法,量化其有限时间性能。我们的算法将分布式随机原始方法与基于同型的方法进行了自适应调整学习率的方法,以便通过从因果导轨轨迹中采用新鲜的在线样本来最小化平均投影的Bellman误差。我们明确考虑了采样的Markovian性质,并改善了从$ O(1 / \ sqrt {t})$到〜$ o(1 / t)$的最佳已知的有限时间误差,其中$ t $迭代的总数。
translated by 谷歌翻译
这项工作审查了旨在在通信约束下运行的自适应分布式学习策略。我们考虑一个代理网络,必须从持续观察流数据来解决在线优化问题。代理商实施了分布式合作策略,其中允许每个代理商与其邻居执行本地信息交换。为了应对通信约束,必须不可避免地压缩交换信息。我们提出了一种扩散策略,昵称为ACTC(适应 - 压缩 - 然后组合),其依赖于以下步骤:i)每个代理执行具有恒定步长大小的单独随机梯度更新的适应步骤; ii)一种压缩步骤,它利用最近引入的随机压缩操作员;和III)每个代理组合从其邻居接收的压缩更新的组合步骤。这项工作的区别要素如下。首先,我们专注于自适应策略,其中常数(而不是递减)阶梯大小对于实时响应非间断变化至关重要。其次,我们考虑一般的指导图表和左随机组合政策,使我们能够增强拓扑和学习之间的相互作用。第三,与对所有个人代理的成本职能承担强大的凸起的相关作品相比,我们只需要在网络水平的强大凸起,即使单个代理具有强凸的成本,剩余的代理商也不满足凸起成本。第四,我们专注于扩散(而不是共识)战略。在压缩信息的苛刻设置下,建立ACTC迭代在所需的优化器周围波动,在相邻代理之间交换的比特方面取得了显着的节省。
translated by 谷歌翻译
机器学习已开始在许多应用中发挥核心作用。这些应用程序中的许多应用程序通常还涉及由于设计约束(例如多元系统)或计算/隐私原因(例如,在智能手机数据上学习),这些数据集分布在多个计算设备/机器上。这样的应用程序通常需要以分散的方式执行学习任务,其中没有直接连接到所有节点的中央服务器。在现实世界中的分散设置中,由于设备故障,网络攻击等,节点容易出现未发现的故障,这可能会崩溃非稳固的学习算法。本文的重点是在发生拜占庭失败的节点的存在下对分散学习的鲁棒化。拜占庭故障模型允许故障节点任意偏离其预期行为,从而确保设计最健壮的算法的设计。但是,与分布式学习相反,对分散学习中拜占庭式的弹性的研究仍处于起步阶段。特别是,现有的拜占庭式分散学习方法要么不能很好地扩展到大规模的机器学习模型,要么缺乏统计收敛性可确保有助于表征其概括错误。在本文中,引入了一个可扩展的,拜占庭式的分散的机器学习框架,称为拜占庭的分散梯度下降(桥梁)。本文中还提供了强烈凸出问题和一类非凸问题的算法和统计收敛保证。此外,使用大规模的分散学习实验来确定桥梁框架是可扩展的,并且为拜占庭式弹性凸和非convex学习提供了竞争结果。
translated by 谷歌翻译
分散和联合学习的关键挑战之一是设计算法,这些算法有效地处理跨代理商的高度异构数据分布。在本文中,我们在数据异质性下重新审视分散的随机梯度下降算法(D-SGD)的分析。我们在D-SGD的收敛速率上展示了新数量的关键作用,称为\ emph {邻居异质性}。通过结合通信拓扑结构和异质性,我们的分析阐明了这两个分散学习中这两个概念之间的相互作用较低。然后,我们认为邻里的异质性提供了一种自然标准,可以学习数据依赖性拓扑结构,以减少(甚至可以消除)数据异质性对D-SGD收敛时间的有害影响。对于与标签偏度分类的重要情况,我们制定了学习这样一个良好拓扑的问题,例如我们使用Frank-Wolfe算法解决的可拖动优化问题。如一组模拟和现实世界实验所示,我们的方法提供了一种设计稀疏拓扑的方法,可以在数据异质性下平衡D-SGD的收敛速度和D-SGD的触电沟通成本。
translated by 谷歌翻译
本文提出了一种针对分布式凸复合优化问题的新型双重不精确拆分算法(DISA),其中本地损耗函数由$ L $ -SMOOTH的项组成,可能是由线性操作员组成的非平滑项。我们证明,当原始和双重尺寸$ \ tau $,$ \ beta $满足$ 0 <\ tau <{2}/{l} $和$ 0 <\ tau \ beta <1 $时,我们证明了DISA是收敛的。与现有的原始双侧近端分裂算法(PD-PSA)相比,DISA克服了收敛步骤范围对线性操作员欧几里得范围的依赖性。这意味着当欧几里得规范大时,DISA允许更大的步骤尺寸,从而确保其快速收敛。此外,我们分别在一般凸度和度量次级性下分别建立了disa的均值和线性收敛速率。此外,还提供了DISA的近似迭代版本,并证明了该近似版本的全局收敛性和sublinear收敛速率。最后,数值实验不仅证实了理论分析,而且还表明,与现有的PD-PSA相比,DISA达到了显着的加速度。
translated by 谷歌翻译
我们开发了一个通用框架,统一了几种基于梯度的随机优化方法,用于在集中式和分布式场景中,用于经验风险最小化问题。该框架取决于引入的增强图的引入,该图形由对样品进行建模和边缘建模设备设备间通信和设备内随机梯度计算。通过正确设计增强图的拓扑结构,我们能够作为特殊情况恢复为著名的本地-SGD和DSGD算法,并提供了统一的方差还原(VR)和梯度跟踪(GT)方法(例如Saga) ,本地-SVRG和GT-SAGA。我们还提供了统一的收敛分析,以依靠适当的结构化lyapunov函数,以实现平滑和(强烈的)凸目标,并且获得的速率可以恢复许多现有算法的最著名结果。速率结果进一步表明,VR和GT方法可以有效地消除设备内部和跨设备内的数据异质性,从而使算法与最佳解决方案的确切收敛性。数值实验证实了本文中的发现。
translated by 谷歌翻译
我们考虑了分布式随机优化问题,其中$ n $代理想要最大程度地减少代理本地函数总和给出的全局函数,并专注于当代理的局部函数在非i.i.i.d上定义时,专注于异质设置。数据集。我们研究本地SGD方法,在该方法中,代理执行许多局部随机梯度步骤,并偶尔与中央节点进行通信以改善其本地优化任务。我们分析了本地步骤对局部SGD的收敛速率和通信复杂性的影响。特别是,我们允许在$ i $ th的通信回合($ h_i $)期间允许在所有通信回合中进行固定数量的本地步骤。我们的主要贡献是将本地SGD的收敛速率表征为$ \ {h_i \} _ {i = 1}^r $在强烈凸,convex和nonconvex local函数下的函数,其中$ r $是沟通总数。基于此特征,我们在序列$ \ {h_i \} _ {i = 1}^r $上提供足够的条件,使得本地SGD可以相对于工人数量实现线性加速。此外,我们提出了一种新的沟通策略,将本地步骤提高,优于现有的沟通策略,以突出局部功能。另一方面,对于凸和非凸局局功能,我们认为固定的本地步骤是本地SGD的最佳通信策略,并恢复了最新的收敛速率结果。最后,我们通过广泛的数值实验证明我们的理论结果是合理的。
translated by 谷歌翻译
在分散的学习中,节点网络协作以最小化通常是其本地目标的有限总和的整体目标函数,并结合了非平滑的正则化术语,以获得更好的泛化能力。分散的随机近端梯度(DSPG)方法通常用于培训这种类型的学习模型,而随机梯度的方差延迟了收敛速率。在本文中,我们提出了一种新颖的算法,即DPSVRG,通过利用方差减少技术来加速分散的训练。基本思想是在每个节点中引入估计器,该节点周期性地跟踪本地完整梯度,以校正每次迭代的随机梯度。通过将分散的算法转换为具有差异减少的集中内隙近端梯度算法,并控制错误序列的界限,我们证明了DPSVRG以o(1 / t)$的速率收敛于一般凸起目标加上非平滑术语以$ t $作为迭代的数量,而dspg以$ o(\ frac {1} {\ sqrt {t}})$汇聚。我们对不同应用,网络拓扑和学习模型的实验表明,DPSVRG会收敛于DSPG的速度要快得多,DPSVRG的损耗功能与训练时期顺利降低。
translated by 谷歌翻译
本文涉及一种计算代理网络,旨在以分布式方式解决在线优化问题,即通过本地计算和通信,没有任何中央协调员。我们提出了具有自适应动量估计(GTADAM)分布式算法的梯度跟踪,其将梯度跟踪机制与梯度的第一和二阶动量估计相结合。该算法在线设置中分析了具有Lipschitz连续梯度的强凸起成本函数的在线设置。我们为动态遗憾提供了一个与初始条件相关的术语的动态遗憾的上限,以及与客观函数的时间变化有关的另一个术语。此外,在静态设置中保证了线性收敛速率。在从图像分类中,在(移动)目标定位问题上和随机优化设置中的时变分类问题测试该算法。在来自多智能经验学习的这些数值实验中,GTADAM优于最先进的分布式优化方法。
translated by 谷歌翻译
我们研究了随机近似的分散变体,这是一种数据驱动的方法,用于在嘈杂的测量中找到操作员的根。一个具有自己的操作员和数据观察的代理网络,合作地通过分散的通信图找到了聚合操作员的固定点。我们的主要贡献是在从马尔可夫过程中采样时在每个代理下观察到的数据时,对这种分散的随机近似方法提供有限的时间分析;这种缺乏独立性使迭代率偏向和(可能)无限。在相当标准的假设下,我们表明所提出方法的收敛速率与样本是独立的基本相同,仅由对数因子的差异而不同,该对数因素是说明了马尔可夫过程的混合时间。我们的分析中的关键思想是引入一种新型的Razumikhin-Lyapunov函数,该功能是由用于分析延迟普通微分方程的稳定性的一种动机。我们还讨论了拟议方法在多代理系统中许多有趣的学习问题上的应用。
translated by 谷歌翻译
Bilevel programming has recently received attention in the literature, due to a wide range of applications, including reinforcement learning and hyper-parameter optimization. However, it is widely assumed that the underlying bilevel optimization problem is solved either by a single machine or in the case of multiple machines connected in a star-shaped network, i.e., federated learning setting. The latter approach suffers from a high communication cost on the central node (e.g., parameter server) and exhibits privacy vulnerabilities. Hence, it is of interest to develop methods that solve bilevel optimization problems in a communication-efficient decentralized manner. To that end, this paper introduces a penalty function based decentralized algorithm with theoretical guarantees for this class of optimization problems. Specifically, a distributed alternating gradient-type algorithm for solving consensus bilevel programming over a decentralized network is developed. A key feature of the proposed algorithm is to estimate the hyper-gradient of the penalty function via decentralized computation of matrix-vector products and few vector communications, which is then integrated within our alternating algorithm to give the finite-time convergence analysis under different convexity assumptions. Owing to the generality of this complexity analysis, our result yields convergence rates for a wide variety of consensus problems including minimax and compositional optimization. Empirical results on both synthetic and real datasets demonstrate that the proposed method works well in practice.
translated by 谷歌翻译
诸如压缩感测,图像恢复,矩阵/张恢复和非负矩阵分子等信号处理和机器学习中的许多近期问题可以作为约束优化。预计的梯度下降是一种解决如此约束优化问题的简单且有效的方法。本地收敛分析将我们对解决方案附近的渐近行为的理解,与全球收敛分析相比,收敛率的较小界限提供了较小的界限。然而,本地保证通常出现在机器学习和信号处理的特定问题领域。此稿件在约束最小二乘范围内,对投影梯度下降的局部收敛性分析提供了统一的框架。该建议的分析提供了枢转局部收敛性的见解,例如线性收敛的条件,收敛区域,精确的渐近收敛速率,以及达到一定程度的准确度所需的迭代次数的界限。为了证明所提出的方法的适用性,我们介绍了PGD的收敛分析的配方,并通过在四个基本问题上的配方的开始延迟应用来证明它,即线性约束最小二乘,稀疏恢复,最小二乘法使用单位规范约束和矩阵完成。
translated by 谷歌翻译
我们考虑凸优化问题,这些问题被广泛用作低级基质恢复问题的凸松弛。特别是,在几个重要问题(例如相位检索和鲁棒PCA)中,在许多情况下的基本假设是最佳解决方案是排名一列。在本文中,我们考虑了目标上的简单自然的条件,以使这些放松的最佳解决方案确实是独特的,并且是一个排名。主要是,我们表明,在这种情况下,使用线路搜索的标准Frank-Wolfe方法(即,没有任何参数调整),该方法仅需要单个排名一级的SVD计算,可以找到$ \ epsilon $ - 仅在$ o(\ log {1/\ epsilon})$迭代(而不是以前最著名的$ o(1/\ epsilon)$)中的近似解决方案,尽管目的不是强烈凸。我们考虑了基本方法的几种变体,具有改善的复杂性,以及由强大的PCA促进的扩展,最后是对非平滑问题的扩展。
translated by 谷歌翻译
本文着重于随机鞍点问题的分布式优化。本文的第一部分专门针对平滑(强)(强)(强)凹形鞍点问题以及实现这些结合的近乎最佳算法的平滑(强)凸出的凹点鞍点问题的平滑(强)凸出的(强)凸出的凸出鞍点问题。接下来,我们提出了一种新的联合算法,用于分布式鞍点问题 - 额外的步骤本地SGD。对新方法的理论分析是针对强烈凸出的凹形和非convex-non-concave问题进行的。在本文的实验部分中,我们在实践中显示了方法的有效性。特别是,我们以分布方式训练甘恩。
translated by 谷歌翻译
本文分析了双模的彼此优化随机算法框架。 Bilevel优化是一类表现出两级结构的问题,其目标是使具有变量的外目标函数最小化,该变量被限制为对(内部)优化问题的最佳解决方案。我们考虑内部问题的情况是不受约束的并且强烈凸起的情况,而外部问题受到约束并具有平滑的目标函数。我们提出了一种用于解决如此偏纤维问题的两次时间尺度随机近似(TTSA)算法。在算法中,使用较大步长的随机梯度更新用于内部问题,而具有较小步长的投影随机梯度更新用于外部问题。我们在各种设置下分析了TTSA算法的收敛速率:当外部问题强烈凸起(RESP。〜弱凸)时,TTSA算法查找$ \ MATHCAL {O}(k ^ { - 2/3})$ -Optimal(resp。〜$ \ mathcal {o}(k ^ {-2/5})$ - 静止)解决方案,其中$ k $是总迭代号。作为一个应用程序,我们表明,两个时间尺度的自然演员 - 批评批评近端策略优化算法可以被视为我们的TTSA框架的特殊情况。重要的是,与全球最优政策相比,自然演员批评算法显示以预期折扣奖励的差距,以$ \ mathcal {o}(k ^ { - 1/4})的速率收敛。
translated by 谷歌翻译
在本文中,我们研究了一个凸凹马鞍点问题$ \ min_x \ max_y f(x)+ y ^ \ top \ mathbf {a} x - g(y)$,其中$ f(x)$和$ g(y)$是平滑和凸的功能。我们提出了一种加速的原始 - 双梯度方法,用于解决该问题(i)在匹配较低复杂性绑定的强 - 凸强 - 凹形方案中实现最佳线性收敛速率(Zhang等,2021)和(ii)在只有其中一个函数$ f(x)$和$ g(y)$的情况下实现加速的线性收敛速率,而甚至没有它们。最后,我们获得了一种线性收敛算法,用于一般平滑和凸凹骑马点问题$ \ min_x \ max_y f(x,y)$,不需要强大的凸起或强凹面。
translated by 谷歌翻译
我们考虑使用梯度下降来最大程度地减少$ f(x)= \ phi(xx^{t})$在$ n \ times r $因件矩阵$ x $上,其中$ \ phi是一种基础平稳凸成本函数定义了$ n \ times n $矩阵。虽然只能在合理的时间内发现只有二阶固定点$ x $,但如果$ x $的排名不足,则其排名不足证明其是全球最佳的。这种认证全球最优性的方式必然需要当前迭代$ x $的搜索等级$ r $,以相对于级别$ r^{\ star} $过度参数化。不幸的是,过度参数显着减慢了梯度下降的收敛性,从$ r = r = r = r^{\ star} $的线性速率到$ r> r> r> r> r^{\ star} $,即使$ \ phi $是$ \ phi $强烈凸。在本文中,我们提出了一项廉价的预处理,该预处理恢复了过度参数化的情况下梯度下降回到线性的收敛速率,同时也使在全局最小化器$ x^{\ star} $中可能不良条件变得不可知。
translated by 谷歌翻译