简单的复合物可以看作是图形的高维概括,这些图表一次在不同分辨率下的顶点之间明确编码多路有序关系。这个概念是检测数据的较高拓扑特征的核心,图形仅编码成对关系的图形仍然遗忘。尽管已尝试将图形神经网络(GNN)扩展到简单复杂设置,但这些方法并未固有地利用网络的基本拓扑结构。我们提出了一个图形卷积模型,用于学习由简单复合物的$ K $学术特征参数化的学习功能。通过频谱操纵其组合$ k $二维的霍奇laplacians,提议的模型可以实现基础简单复合物的学习拓扑特征,特别是,每个$ k $ simplex的距离与最接近的“最佳” $ k $ k $ - $ k $ - $ k $ - th $ k $ - ,有效地提供同源性本地化的替代方案。
translated by 谷歌翻译
在过去十年中,图形内核引起了很多关注,并在结构化数据上发展成为一种快速发展的学习分支。在过去的20年中,该领域发生的相当大的研究活动导致开发数十个图形内核,每个图形内核都对焦于图形的特定结构性质。图形内核已成功地成功地在广泛的域中,从社交网络到生物信息学。本调查的目标是提供图形内核的文献的统一视图。特别是,我们概述了各种图形内核。此外,我们对公共数据集的几个内核进行了实验评估,并提供了比较研究。最后,我们讨论图形内核的关键应用,并概述了一些仍有待解决的挑战。
translated by 谷歌翻译
图形神经网络(GNNS)的表现力量受到限制,具有远程交互的斗争,缺乏模拟高阶结构的原则性方法。这些问题可以归因于计算图表和输入图结构之间的强耦合。最近提出的消息通过单独的网络通过执行图形的Clique复合物的消息来自然地解耦这些元素。然而,这些模型可能受到单纯复合物(SCS)的刚性组合结构的严重限制。在这项工作中,我们将最近的基于常规细胞复合物的理论结果扩展到常规细胞复合物,灵活地满满SCS和图表的拓扑物体。我们表明,该概括提供了一组强大的图表“提升”转换,每个图形是导致唯一的分层消息传递过程。我们集体呼叫CW Networks(CWNS)的结果方法比WL测试更强大,而不是比3 WL测试更强大。特别是,当应用于分子图问题时,我们证明了一种基于环的一个这样的方案的有效性。所提出的架构从可提供的较大的表达效益于常用的GNN,高阶信号的原则建模以及压缩节点之间的距离。我们展示了我们的模型在各种分子数据集上实现了最先进的结果。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
A prominent paradigm for graph neural networks is based on the message passing framework. In this framework, information communication is realized only between neighboring nodes. The challenge of approaches that use this paradigm is to ensure efficient and accurate \textit{long distance communication} between nodes, as deep convolutional networks are prone to over-smoothing. In this paper, we present a novel method based on time derivative graph diffusion (TIDE), with a learnable time parameter. Our approach allows to adapt the spatial extent of diffusion across different tasks and network channels, thus enabling medium and long-distance communication efficiently. Furthermore, we show that our architecture directly enables local message passing and thus inherits from the expressive power of local message passing approaches. We show that on widely used graph benchmarks we achieve comparable performance and on a synthetic mesh dataset we outperform state-of-the-art methods like GCN or GRAND by a significant margin.
translated by 谷歌翻译
图表神经网络(GNNS)最近在人工智能(AI)领域的普及,这是由于它们作为输入数据相对非结构化数据类型的独特能力。尽管GNN架构的一些元素在概念上类似于传统神经网络(以及神经网络变体)的操作中,但是其他元件代表了传统深度学习技术的偏离。本教程通过整理和呈现有关GNN最常见和性能变种的动机,概念,数学和应用的细节,将GNN的权力和新颖性暴露给AI从业者。重要的是,我们简明扼要地向实际示例提出了本教程,从而为GNN的主题提供了实用和可访问的教程。
translated by 谷歌翻译
自引入以来,图形注意力网络在图表表示任务中取得了出色的结果。但是,这些网络仅考虑节点之间的成对关系,然后它们无法完全利用许多现实世界数据集中存在的高阶交互。在本文中,我们介绍了细胞注意网络(CANS),这是一种在图表上定义的数据上运行的神经体系结构,将图表示为介绍的细胞复合物的1个骨骼,以捕获高阶相互作用。特别是,我们利用细胞复合物中的下层和上层社区来设计两种独立的掩盖自我发项机制,从而推广了常规的图形注意力策略。罐中使用的方法是层次结构的,并结合了以下步骤:i)从{\ it node demantion}中学习{\ it Edge功能}的提升算法}; ii)一种细胞注意机制,可以在下层和上邻居上找到边缘特征的最佳组合; iii)层次{\ it Edge Pooling}机制,以提取一组紧凑的有意义的功能集。实验结果表明,CAN是一种低复杂性策略,它与基于图的学​​习任务的最新结果相比。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
单纯性神经网络(SNN)最近被出现为图表学习中最新方向,这扩大了从节点空间到图形上的单纯复合体的卷积体系结构的想法。在目前的实践中,单纯复合资源允许我们描述高阶交互和多节点图结构的节点中的节点之间的成对关系进行预先定位通过在卷积操作和新块Hodge-Laplacian之间建立连接时,我们提出了第一个用于链接预测的SNN。我们的新块单纯性复杂神经网络(BSCNET)模型通过系统地掺入不同尺寸的多个高阶图结构之间的突出相互作用来推广现有的图形卷积网络(GCN)框架。我们讨论BSCNET背后的理论基础,并说明了其在八个现实世界和合成数据集上的链接预测的实用性。我们的实验表明,BSCNETS在保持低计算成本的同时优于最先进的模型,同时保持最高的余量。最后,我们展示了BSCnets作为追踪Covid-19等传染病传播的新有前途的替代品,并测量医疗保障风险缓解策略的有效性。
translated by 谷歌翻译
图形卷积网络是一类流行的深神经网络算法,在许多关系学习任务中都表现出成功。尽管它们取得了成功,但图形卷积网络仍表现出许多特殊的特征,包括偏见学习过度平滑和同质性功能,由于这些算法的复杂性质,这些功能不容易被诊断出来。我们建议通过研究捆卷卷积网络的神经切线内核来弥合这一差距,这是图形卷积网络的拓扑概括。为此,我们得出了捆卷卷网络的神经切线内核的参数化,该内部的卷积网络将函数分为两个部分:一个由图形确定的正向扩散过程驱动,另一个由节点对节点激活的复合效应确定的部分。输出层。这种以几何为重点的推导产生了许多直接见解,我们会详细讨论。
translated by 谷歌翻译
In the last few years, graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. This emerging field has witnessed an extensive growth of promising techniques that have been applied with success to computer science, mathematics, biology, physics and chemistry. But for any successful field to become mainstream and reliable, benchmarks must be developed to quantify progress. This led us in March 2020 to release a benchmark framework that i) comprises of a diverse collection of mathematical and real-world graphs, ii) enables fair model comparison with the same parameter budget to identify key architectures, iii) has an open-source, easy-to-use and reproducible code infrastructure, and iv) is flexible for researchers to experiment with new theoretical ideas. As of December 2022, the GitHub repository has reached 2,000 stars and 380 forks, which demonstrates the utility of the proposed open-source framework through the wide usage by the GNN community. In this paper, we present an updated version of our benchmark with a concise presentation of the aforementioned framework characteristics, an additional medium-sized molecular dataset AQSOL, similar to the popular ZINC, but with a real-world measured chemical target, and discuss how this framework can be leveraged to explore new GNN designs and insights. As a proof of value of our benchmark, we study the case of graph positional encoding (PE) in GNNs, which was introduced with this benchmark and has since spurred interest of exploring more powerful PE for Transformers and GNNs in a robust experimental setting.
translated by 谷歌翻译
最新提出的基于变压器的图形模型的作品证明了香草变压器用于图形表示学习的不足。要了解这种不足,需要研究变压器的光谱分析是否会揭示其对其表现力的见解。类似的研究已经确定,图神经网络(GNN)的光谱分析为其表现力提供了额外的观点。在这项工作中,我们系统地研究并建立了变压器领域中的空间和光谱域之间的联系。我们进一步提供了理论分析,并证明了变压器中的空间注意机制无法有效捕获所需的频率响应,因此,固有地限制了其在光谱空间中的表现力。因此,我们提出了feta,该框架旨在在整个图形频谱(即图形的实际频率成分)上进行注意力类似于空间空间中的注意力。经验结果表明,FETA在标准基准的所有任务中为香草变压器提供均匀的性能增益,并且可以轻松地扩展到具有低通特性的基于GNN的模型(例如GAT)。
translated by 谷歌翻译
机器学习,在深入学习的进步,在过去分析时间序列方面表现出巨大的潜力。但是,在许多情况下,可以通过将其结合到学习方法中可能改善预测的附加信息。这对于由例如例如传感器位置的传感器网络而产生的数据至关重要。然后,可以通过通过图形结构建模,以及顺序(时间)信息来利用这种空间信息。适应深度学习的最新进展在各种图形相关任务中表明了有希望的潜力。但是,这些方法尚未在很大程度上适用于时间序列相关任务。具体而言,大多数尝试基本上围绕空间 - 时间图形神经网络巩固了时间序列预测的小序列长度。通常,这些架构不适合包含大数据序列的回归或分类任务。因此,在这项工作中,我们使用图形神经网络的好处提出了一种能够在多变量时间序列回归任务中处理这些长序列的架构。我们的模型在包含地震波形的两个地震数据集上进行测试,其中目标是预测在一组站的地面摇动的强度测量。我们的研究结果表明了我们的方法的有希望的结果,这是深入讨论的额外消融研究。
translated by 谷歌翻译
异质图具有多个节点和边缘类型,并且在语义上比同质图更丰富。为了学习这种复杂的语义,许多用于异质图的图形神经网络方法使用Metapaths捕获节点之间的多跳相互作用。通常,非目标节点的功能未纳入学习过程。但是,可以存在涉及多个节点或边缘的非线性高阶相互作用。在本文中,我们提出了Simplicial Graph注意网络(SGAT),这是一种简单的复杂方法,可以通过将非目标节点的特征放在简单上来表示这种高阶相互作用。然后,我们使用注意机制和上邻接来生成表示。我们凭经验证明了方法在异质图数据集上使用节点分类任务的方法的功效,并进一步显示了SGAT通过采用随机节点特征来提取结构信息的能力。数值实验表明,SGAT的性能优于其他当前最新的异质图学习方法。
translated by 谷歌翻译
图形神经网络(GNN)已被证明可以实现竞争结果,以解决与图形相关的任务,例如节点和图形分类,链接预测和节点以及各种域中的图形群集。大多数GNN使用消息传递框架,因此称为MPNN。尽管有很有希望的结果,但据报道,MPNN会遭受过度平滑,过度阵型和不足的影响。文献中已经提出了图形重新布线和图形池作为解决这些局限性的解决方案。但是,大多数最先进的图形重新布线方法无法保留该图的全局拓扑,因此没有可区分(电感),并且需要调整超参数。在本文中,我们提出了Diffwire,这是一个在MPNN中进行图形重新布线的新型框架,它通过利用LOV \'ASZ绑定来原理,完全可区分且无参数。我们的方法通过提出两个新的,mpnns中的新的互补层来提供统一的图形重新布线:首先,ctlayer,一个学习通勤时间并将其用作边缘重新加权的相关函数;其次,Gaplayer是优化光谱差距的图层,具体取决于网络的性质和手头的任务。我们从经验上验证了我们提出的方法的价值,并使用基准数据集分别验证了这些层的每个层以进行图形分类。 Diffwire将通勤时间的可学习性汇集到相关的曲率定义,为发展更具表现力的MPNN的发展打开了大门。
translated by 谷歌翻译
近年来,代数拓扑及其现代发展,即持续的同源性理论,在图形表示学习中表现出巨大的潜力。在本文中,基于代数拓扑的数学,我们提出了一种新颖的归纳关系预测解决方案,这是知识图完成的重要学习任务。为了预测两个实体之间的关系,一个人可以使用规则的存在,即一系列关系。先前的作品将规则视为路径,主要集中于搜索实体之间的路径。规则的空间很大,必须牺牲效率或准确性。在本文中,我们将规则视为循环,并表明周期的空间具有基于代数拓扑数学的数学结构。通过探索周期空间的线性结构,我们可以提高规则的搜索效率。我们建议收集跨越周期空间的循环基础。我们在收集的周期上建立了一个新颖的GNN框架,以学习周期的表示,并预测关系的存在/不存在。我们的方法在基准上实现了最先进的性能。
translated by 谷歌翻译
Graph神经网络(GNN)最近已成为使用图的机器学习的主要范式。对GNNS的研究主要集中于消息传递神经网络(MPNNS)的家族。与同构的Weisfeiler-Leman(WL)测试类似,这些模型遵循迭代的邻域聚合过程以更新顶点表示,并通过汇总顶点表示来更新顶点图表。尽管非常成功,但在过去的几年中,对MPNN进行了深入的研究。因此,需要新颖的体系结构,这将使该领域的研究能够脱离MPNN。在本文中,我们提出了一个新的图形神经网络模型,即所谓的$ \ pi $ -gnn,该模型学习了每个图的“软”排列(即双随机)矩阵,从而将所有图形投影到一个共同的矢量空间中。学到的矩阵在输入图的顶点上强加了“软”顺序,并基于此顺序,将邻接矩阵映射到向量中。这些向量可以被送入完全连接或卷积的层,以应对监督的学习任务。在大图的情况下,为了使模型在运行时间和记忆方面更有效,我们进一步放松了双随机矩阵,以使其排列随机矩阵。我们从经验上评估了图形分类和图形回归数据集的模型,并表明它与最新模型达到了性能竞争。
translated by 谷歌翻译
图表神经网络(GNNS)在各种机器学习任务中获得了表示学习的提高。然而,应用邻域聚合的大多数现有GNN通常在图中的图表上执行不良,其中相邻的节点属于不同的类。在本文中,我们示出了在典型的异界图中,边缘可以被引导,以及是否像是处理边缘,也可以使它们过度地影响到GNN模型的性能。此外,由于异常的限制,节点对来自本地邻域之外的类似节点的消息非常有益。这些激励我们开发一个自适应地学习图表的方向性的模型,并利用潜在的长距离相关性节点之间。我们首先将图拉普拉斯概括为基于所提出的特征感知PageRank算法向数字化,该算法同时考虑节点之间的图形方向性和长距离特征相似性。然后,Digraph Laplacian定义了一个图形传播矩阵,导致一个名为{\ em diglaciangcn}的模型。基于此,我们进一步利用节点之间的通勤时间测量的节点接近度,以便在拓扑级别上保留节点的远距离相关性。具有不同级别的10个数据集的广泛实验,同意级别展示了我们在节点分类任务任务中对现有解决方案的有效性。
translated by 谷歌翻译