常规的自我监督单眼深度预测方法基于静态环境假设,这导致由于对象运动引入的不匹配和遮挡问题而导致动态场景的准确性降解。现有的以动态对象为中心的方法仅部分解决了训练损失级别的不匹配问题。在本文中,我们因此提出了一种新型的多帧单眼预测方法,以在预测和监督损失水平上解决这些问题。我们的方法称为DynamicDepth,是一个新框架,该框架是通过自我监督周期一致的学习方案训练的。提出了动态对象运动解开(DOMD)模块以解开对象运动以解决不匹配问题。此外,新颖的闭塞成本量和重新投射损失旨在减轻对象运动的闭塞作用。对CityScapes和Kitti数据集进行的广泛分析和实验表明,我们的方法显着优于最先进的单眼深度预测方法,尤其是在动态对象的领域。代码可从https://github.com/autoailab/dynamicdepth获得
translated by 谷歌翻译
自我监督的单眼深度预测提供了一种经济有效的解决方案,以获得每个像素的3D位置。然而,现有方法通常会导致不满意的准确性,这对于自治机器人至关重要。在本文中,我们提出了一种新的两级网络,通过利用低成本稀疏(例如4梁)LIDAR来推进自我监督单眼密集深度学习。与使用稀疏激光雷达的现有方法不同,主要以耗时的迭代后处理,我们的模型保留单眼图像特征和稀疏的LIDAR功能,以预测初始深度图。然后,有效的前馈细化网络进一步设计为校正伪3D空间中这些初始深度图中的错误,其具有实时性能。广泛的实验表明,我们所提出的模型显着优于所有最先进的自我监控方法,以及基于稀疏的激光器的方法,以及对自我监督单眼深度预测和完成任务。通过精确的密集深度预测,我们的模型优于基于最先进的稀疏激光雷达的方法(伪LIDAR ++)在Kitti排行榜上下游任务单眼3D对象检测超过68%。代码可在https://github.com/autoailab/fusiondepth获得
translated by 谷歌翻译
Per-pixel ground-truth depth data is challenging to acquire at scale. To overcome this limitation, self-supervised learning has emerged as a promising alternative for training models to perform monocular depth estimation. In this paper, we propose a set of improvements, which together result in both quantitatively and qualitatively improved depth maps compared to competing self-supervised methods.Research on self-supervised monocular training usually explores increasingly complex architectures, loss functions, and image formation models, all of which have recently helped to close the gap with fully-supervised methods. We show that a surprisingly simple model, and associated design choices, lead to superior predictions. In particular, we propose (i) a minimum reprojection loss, designed to robustly handle occlusions, (ii) a full-resolution multi-scale sampling method that reduces visual artifacts, and (iii) an auto-masking loss to ignore training pixels that violate camera motion assumptions. We demonstrate the effectiveness of each component in isolation, and show high quality, state-of-the-art results on the KITTI benchmark.
translated by 谷歌翻译
在接受高质量的地面真相(如LiDAR数据)培训时,监督的学习深度估计方法可以实现良好的性能。但是,LIDAR只能生成稀疏的3D地图,从而导致信息丢失。每个像素获得高质量的地面深度数据很难获取。为了克服这一限制,我们提出了一种新颖的方法,将有前途的平面和视差几何管道与深度信息与U-NET监督学习网络相结合的结构信息结合在一起,与现有的基于流行的学习方法相比,这会导致定量和定性的改进。特别是,该模型在两个大规模且具有挑战性的数据集上进行了评估:Kitti Vision Benchmark和CityScapes数据集,并在相对错误方面取得了最佳性能。与纯深度监督模型相比,我们的模型在薄物体和边缘的深度预测上具有令人印象深刻的性能,并且与结构预测基线相比,我们的模型的性能更加强大。
translated by 谷歌翻译
Photometric differences are widely used as supervision signals to train neural networks for estimating depth and camera pose from unlabeled monocular videos. However, this approach is detrimental for model optimization because occlusions and moving objects in a scene violate the underlying static scenario assumption. In addition, pixels in textureless regions or less discriminative pixels hinder model training. To solve these problems, in this paper, we deal with moving objects and occlusions utilizing the difference of the flow fields and depth structure generated by affine transformation and view synthesis, respectively. Secondly, we mitigate the effect of textureless regions on model optimization by measuring differences between features with more semantic and contextual information without adding networks. In addition, although the bidirectionality component is used in each sub-objective function, a pair of images are reasoned about only once, which helps reduce overhead. Extensive experiments and visual analysis demonstrate the effectiveness of the proposed method, which outperform existing state-of-the-art self-supervised methods under the same conditions and without introducing additional auxiliary information.
translated by 谷歌翻译
通过探索跨视图一致性,例如,光度计一致性和3D点云的一致性,在自我监督的单眼深度估计(SS-MDE)中取得了显着进步。但是,它们非常容易受到照明差异,遮挡,无纹理区域以及移动对象的影响,使它们不够强大,无法处理各种场景。为了应对这一挑战,我们在本文中研究了两种强大的跨视图一致性。首先,相邻帧之间的空间偏移场是通过通过可变形对齐来从其邻居重建参考框架来获得的,该比对通过深度特征对齐(DFA)损失来对齐时间深度特征。其次,计算每个参考框架及其附近框架的3D点云并转换为体素空间,在其中计算每个体素中的点密度并通过体素密度比对(VDA)损耗对齐。通过这种方式,我们利用了SS-MDE的深度特征空间和3D体素空间的时间连贯性,将“点对点”对齐范式转移到“区域到区域”。与光度一致性损失以及刚性点云对齐损失相比,由于深度特征的强大代表能力以及对上述挑战的素密度的高公差,提出的DFA和VDA损失更加强大。几个户外基准的实验结果表明,我们的方法的表现优于当前最新技术。广泛的消融研究和分析验证了拟议损失的有效性,尤其是在具有挑战性的场景中。代码和型号可在https://github.com/sunnyhelen/rcvc-depth上找到。
translated by 谷歌翻译
由于球形摄像机的兴起,单眼360深度估计成为许多应用(例如自主系统)的重要技术。因此,提出了针对单眼360深度估计的最新框架,例如Bifuse中的双预测融合。为了训练这样的框架,需要大量全景以及激光传感器捕获的相应深度地面真相,这极大地增加了数据收集成本。此外,由于这样的数据收集过程是耗时的,因此将这些方法扩展到不同场景的可扩展性成为一个挑战。为此,从360个视频中进行单眼深度估计网络的自我培训是减轻此问题的一种方法。但是,没有现有的框架将双投射融合融合到自我训练方案中,这极大地限制了自我监督的性能,因为Bi-Prodoction Fusion可以利用来自不同投影类型的信息。在本文中,我们建议Bifuse ++探索双投影融合和自我训练场景的组合。具体来说,我们提出了一个新的融合模块和对比度感知的光度损失,以提高Bifuse的性能并提高对现实世界视频的自我训练的稳定性。我们在基准数据集上进行了监督和自我监督的实验,并实现最先进的性能。
translated by 谷歌翻译
从单眼图像中学习的自我监督深度学习通常依赖于暂时相邻图像帧之间的2D像素光度关系。但是,他们既没有完全利用3D点的几何对应关系,也没有有效地应对闭塞或照明不一致引起的光度扭曲中的歧义。为了解决这些问题,这项工作提出了密度量构建网络(DEVNET),这是一种新型的自我监管的单眼深度学习框架,可以考虑3D空间信息,并利用相邻的相机flustums中的更强的几何约束。我们的DEVNET不是直接从单个图像中回归像素值,而是将摄像头划分为多个平行的平面,并预测每个平面上的点闭塞概率密度。最终的深度图是通过沿相应射线集成密度来生成的。在训练过程中,引入了新颖的正则化策略和损失功能,以减轻光度歧义和过度拟合。如果没有明显放大的模型参数的大小或运行时间,DEVNET在Kitti-2015室外数据集和NYU-V2室内数据集上均优于几个代表性基准。特别是,在深度估计的任务中,在Kitti-2015和NYU-V2上,DEVNET均减少了4%的根平方。代码可在https://github.com/gitkaichenzhou/devnet上找到。
translated by 谷歌翻译
自我监督的学习已经为单眼深度估计显示出非常有希望的结果。场景结构和本地细节都是高质量深度估计的重要线索。最近的作品遭受了场景结构的明确建模,并正确处理细节信息,这导致了预测结果中的性能瓶颈和模糊人工制品。在本文中,我们提出了具有两个有效贡献的通道 - 明智的深度估计网络(Cadepth-Net):1)结构感知模块采用自我关注机制来捕获远程依赖性并聚合在信道中的识别特征尺寸,明确增强了场景结构的感知,获得了更好的场景理解和丰富的特征表示。 2)细节强调模块重新校准通道 - 方向特征映射,并选择性地强调信息性功能,旨在更有效地突出至关重要的本地细节信息和熔断器不同的级别功能,从而更精确,更锐化深度预测。此外,广泛的实验验证了我们方法的有效性,并表明我们的模型在基蒂基准和Make3D数据集中实现了最先进的结果。
translated by 谷歌翻译
Self-supervised monocular depth estimation has shown impressive results in static scenes. It relies on the multi-view consistency assumption for training networks, however, that is violated in dynamic object regions and occlusions. Consequently, existing methods show poor accuracy in dynamic scenes, and the estimated depth map is blurred at object boundaries because they are usually occluded in other training views. In this paper, we propose SC-DepthV3 for addressing the challenges. Specifically, we introduce an external pretrained monocular depth estimation model for generating single-image depth prior, namely pseudo-depth, based on which we propose novel losses to boost self-supervised training. As a result, our model can predict sharp and accurate depth maps, even when training from monocular videos of highly-dynamic scenes. We demonstrate the significantly superior performance of our method over previous methods on six challenging datasets, and we provide detailed ablation studies for the proposed terms. Source code and data will be released at https://github.com/JiawangBian/sc_depth_pl
translated by 谷歌翻译
自我监督的单眼方法可以有效地了解弱纹理表面或反射性对象的深度信息。但是,由于单眼几何建模的固有歧义,深度精度受到限制。相反,由于多视图立体声(MVS)的成功,多帧深度估计方法提高了深度准确性,后者直接使用几何约束。不幸的是,MV经常患有无纹理区域,非斜角表面和移动物体,尤其是在没有已知的相机运动和深度监督的现实世界视频序列中。因此,我们提出了MoveEpth,它利用了单眼线索和速度指导来改善多帧深度学习。与现有的MVS深度和单眼深度之间一致性的方法不同,MoveEpth通过直接解决MV的固有问题来增强多帧深度学习。我们方法的关键是利用单眼深度作为几何优先级来构建MVS成本量,并根据预测的相机速度的指导来调整成本量的深度候选。我们通过学习成本量的不确定性来进一步融合单眼深度和MVS深度,从而导致深度估计多视图几何形状的歧义。广泛的实验表明,移动eptth达到了最先进的性能:与monodepth2和packnet相比,我们的方法相对地将深度准确性提高了20 \%和19.8 \%,而Kitti基准测试的方法则提高了。 MoveEpth还推广到更具挑战性的DDAD基准测试,相对超过7.2 \%。该代码可在https://github.com/jeffwang987/movedepth上获得。
translated by 谷歌翻译
深度估计的自我监督学习在图像序列中使用几何体进行监督,并显示有前途的结果。与许多计算机视觉任务一样,深度网络性能是通过从图像中学习准确的空间和语义表示的能力来确定。因此,利用用于深度估计的语义分割网络是自然的。在这项工作中,基于一个发达的语义分割网络HRNET,我们提出了一种新颖的深度估计网络差异,可以利用下式采样过程和上采样过程。通过应用特征融合和注意机制,我们所提出的方法优于基准基准测试的最先进的单眼深度估计方法。我们的方法还展示了更高分辨率培训数据的潜力。我们通过建立一个挑战性案件的测试集,提出了一个额外的扩展评估策略,经验从标准基准源于标准基准。
translated by 谷歌翻译
最近,以自我监督的方式从单个图像中学习场景深度,最近受到了很多关注,旨在从单一图像中学习场景深度。尽管最近在这一领域做出了努力,但如何学习准确的场景深度并减轻闭塞对自我监督深度估计的负面影响仍然是一个空旷的问题。在解决这个问题时,我们首先凭经验分析了连续和离散深度约束的影响,这些约束在许多现有作品的培训过程中广泛使用。然后受到上述经验分析的启发,我们提出了一个新型网络,以学习一个自我监督的单眼深度估计,称为ocfd-net的咬合意识到的粗到细深度图。给定任意训练的立体声图像对,提议的OCFD-NET不仅在学习粗级深度图上采用离散的深度约束,而且还采用连续的深度约束来学习场景深度残差,从而导致罚款。 - 级别的深度图。此外,在建议的OCFD-NET下设计了一个遮挡感知模块,该模块能够提高学习闭塞的精细级别深度图的能力。 Kitti的实验结果表明,在大多数情况下,所提出的方法在七个常用指标下的比较最先进方法优于比较的最先进方法。此外,对Make3D的实验结果证明了该方法在四个常用指标下的跨数据集泛化能力方面的有效性。该代码可在https://github.com/zm-zhou/ocfd-net_pytorch上找到。
translated by 谷歌翻译
We present an unsupervised learning framework for the task of monocular depth and camera motion estimation from unstructured video sequences. In common with recent work [10,14,16], we use an end-to-end learning approach with view synthesis as the supervisory signal. In contrast to the previous work, our method is completely unsupervised, requiring only monocular video sequences for training. Our method uses single-view depth and multiview pose networks, with a loss based on warping nearby views to the target using the computed depth and pose. The networks are thus coupled by the loss during training, but can be applied independently at test time. Empirical evaluation on the KITTI dataset demonstrates the effectiveness of our approach: 1) monocular depth performs comparably with supervised methods that use either ground-truth pose or depth for training, and 2) pose estimation performs favorably compared to established SLAM systems under comparable input settings.
translated by 谷歌翻译
尽管现有的单眼深度估计方法取得了长足的进步,但由于网络的建模能力有限和规模歧义问题,预测单个图像的准确绝对深度图仍然具有挑战性。在本文中,我们介绍了一个完全视觉上的基于注意力的深度(Vadepth)网络,在该网络中,将空间注意力和通道注意都应用于所有阶段。通过在远距离沿空间和通道维度沿空间和通道维度的特征的依赖关系连续提取,Vadepth网络可以有效地保留重要的细节并抑制干扰特征,以更好地感知场景结构,以获得更准确的深度估计。此外,我们利用几何先验来形成规模约束,以进行比例感知模型培训。具体而言,我们使用摄像机和由地面点拟合的平面之间的距离构建了一种新颖的规模感知损失,该平面与图像底部中间的矩形区域的像素相对应。 Kitti数据集的实验结果表明,该体系结构达到了最新性能,我们的方法可以直接输出绝对深度而无需后处理。此外,我们在Seasondepth数据集上的实验还证明了我们模型对多个看不见的环境的鲁棒性。
translated by 谷歌翻译
自我监督的单眼深度估计使机器人能够从原始视频流中学习3D感知。假设世界主要是静态的,这种可扩展的方法利用了投射的几何形状和自我运动来通过视图综合学习。在自主驾驶和人类机器人相互作用中常见的动态场景违反了这一假设。因此,它们需要明确建模动态对象,例如通过估计像素3D运动,即场景流。但是,同时对深度和场景流的自我监督学习是不适合的,因为有许多无限的组合导致相同的3D点。在本文中,我们提出了一种草稿,这是一种通过将合成数据与几何自学意识相结合的新方法,能够共同学习深度,光流和场景流。在木筏架构的基础上,我们将光流作为中间任务,以通过三角剖分来引导深度和场景流量学习。我们的算法还利用任务之间的时间和几何一致性损失来改善多任务学习。我们的草案在标准Kitti基准的自我监督的单眼环境中,同时在所有三个任务中建立了新的最新技术状态。项目页面:https://sites.google.com/tri.global/draft。
translated by 谷歌翻译
除了学习基于外观的特征外,多框架深度估计还通过特征匹配利用图像之间的几何关系来改善单帧方法。在本文中,我们重新访问了与自我监督的单眼深度估计的匹配,并提出了一种新颖的变压器体系结构,以生成成本量。我们使用深度污染的表现采样来选择匹配的候选者,并通过一系列自我和跨注意层来完善预测。这些层增强了像素特征之间的匹配概率,改善了容易歧义和局部最小值的标准相似性指标。精制的成本量被解码为深度估计,整个管道仅使用光度目标从视频端到端训练。 Kitti和DDAD数据集的实验表明,我们的深度构建体在自我监督的单眼估计中建立了新的最新技术,甚至具有高度专业的监督单帧体系结构竞争。我们还表明,我们学到的跨意义网络产生可以在数据集中转移的表示形式,从而提高了训练策略的有效性。项目页面:https://sites.google.com/tri.global/depthformer
translated by 谷歌翻译
对于单眼深度估计,获取真实数据的地面真相并不容易,因此通常使用监督的合成数据采用域适应方法。但是,由于缺乏实际数据的监督,这仍然可能会导致较大的域间隙。在本文中,我们通过从真实数据中生成可靠的伪基础真理来开发一个域适应框架,以提供直接的监督。具体而言,我们提出了两种用于伪标记的机制:1)通过测量图像具有相同内容但不同样式的深度预测的一致性,通过测量深度预测的一致性; 2)通过点云完成网络的3D感知伪标记,该网络学会完成3D空间中的深度值,从而在场景中提供更多的结构信息,以完善并生成更可靠的伪标签。在实验中,我们表明我们的伪标记方法改善了各种环境中的深度估计,包括在训练过程中使用立体声对。此外,该提出的方法对现实世界数据集中的几种最新无监督域的适应方法表现出色。
translated by 谷歌翻译
我们提出了自我监督单眼深度估计(SDE)的通用多任务培训框架。深入培训的深度模型,具有在标准单任务SDE框架中培训的相同型号。通过将额外的自蒸馏任务引入标准的SDE训练框架,低置训练深度网络,不仅可以预测图像重建任务的深度图,而且还用于从培训的教师网络蒸馏出具有未标记数据的知识。为了利用这种多任务设置,我们为每个任务提出了同性恋的不确定性配方,以惩罚可能受教师网络噪声影响的区域,或违反SDE假设。我们对Kitti提供了广泛的评估,以展示使用拟议框架培训一系列现有网络实现的改进,我们在此任务上实现了最先进的表现。此外,子深度使模型能够估计深度输出的不确定性。
translated by 谷歌翻译
近年来,尤其是在户外环境中,自我监督的单眼深度估计已取得了重大进展。但是,在大多数现有数据被手持设备捕获的室内场景中,深度预测结果无法满足。与室外环境相比,使用自我监督的方法估算室内环境的单眼视频深度,导致了两个额外的挑战:(i)室内视频序列的深度范围在不同的框架上有很大变化,使深度很难进行。网络以促进培训的一致深度线索; (ii)用手持设备记录的室内序列通常包含更多的旋转运动,这使姿势网络难以预测准确的相对摄像头姿势。在这项工作中,我们通过对这些挑战进行特殊考虑并巩固了一系列良好实践,以提高自我监督的单眼深度估计室内环境的表现,从而提出了一种新颖的框架单声道++。首先,提出了具有基于变压器的比例回归网络的深度分解模块,以明确估算全局深度尺度因子,预测的比例因子可以指示最大深度值。其次,我们不像以前的方法那样使用单阶段的姿势估计策略,而是建议利用残留姿势估计模块来估计相对摄像机在连续迭代的跨帧中构成。第三,为了为我们的残留姿势估计模块纳入广泛的坐标指南,我们建议直接在输入上执行坐标卷积编码,以实现姿势网络。提出的方法在各种基准室内数据集(即Euroc Mav,Nyuv2,扫描仪和7片)上进行了验证,证明了最先进的性能。
translated by 谷歌翻译