获得抽象知识的能力是人类智力的标志,许多人认为是人类和神经网络模型之间的核心差异之一。代理可以通过元学习对抽象的归纳偏见,在那里他们接受了共享可以学习和应用的一些抽象结构的任务分布的培训。但是,由于很难解释神经网络,因此很难判断代理人是学会了潜在的抽象,或者是该抽象特征的统计模式。在这项工作中,我们比较了人类和代理在荟萃方面学习范式中的表现,其中从抽象规则中产生了任务。我们定义了一种用于构建“任务Metamers”的新方法,该方法与抽象任务的统计数据非常匹配,但使用了不同的基本生成过程,并评估了在抽象和Metamer任务上的性能。在我们的第一组实验中,我们发现人类在抽象任务上的表现要比MetAmer任务更好,而广泛使用的元强化学习代理在抽象任务上的表现要比匹配的Metamers差。在第二组实验中,我们将任务基于直接从经验鉴定的人类先验得出的抽象基础。我们利用相同的过程来生成相应的METAMER任务,并看到人与代理之间的相同双重分离。这项工作为表征人类和机器学习之间的差异奠定了基础,可以在未来的工作中用于以人类行为开发机器。
translated by 谷歌翻译
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
translated by 谷歌翻译
People learning new concepts can often generalize successfully from just a single example, yet machine learning algorithms typically require tens or hundreds of examples to perform with similar accuracy. People can also use learned concepts in richer ways than conventional algorithms-for action, imagination, and explanation. We present a computational model that captures these human learning abilities for a large class of simple visual concepts: handwritten characters from the world's alphabets. The model represents concepts as simple programs that best explain observed examples under a Bayesian criterion. On a challenging one-shot classification task, the model achieves human-level performance while outperforming recent deep learning approaches. We also present several "visual Turing tests" probing the model's creative generalization abilities, which in many cases are indistinguishable from human behavior.
translated by 谷歌翻译
解释在人类学习中发挥着相当大的作用,特别是在仍然在形成抽象的主要挑战,以及了解世界的关系和因果结构的地区。在这里,我们探索强化学习代理人是否同样可以从解释中受益。我们概述了一系列关系任务,涉及选择一个在一个集合中奇数一个的对象(即,沿许多可能的特征尺寸之一的唯一)。奇数一张任务要求代理在一组对象中的多维关系上推理。我们展示了代理商不会仅从奖励中学习这些任务,但是当它们也培训以生成语言解释对象属性或选择正确或不正确时,实现> 90%的性能。在进一步的实验中,我们展示了预测的解释如何使代理能够从模糊,因果困难的训练中适当地推广,甚至可以学习执行实验干预以识别因果结构。我们表明解释有助于克服代理人来解决简单特征的趋势,并探讨解释的哪些方面使它们成为最有益的。我们的结果表明,从解释中学习是一种强大的原则,可以为培训更强大和一般机器学习系统提供有希望的道路。
translated by 谷歌翻译
语言是协调问题的强大解决方案:他们提供了稳定的,有关我们所说的单词如何对应于我们头脑中的信仰和意图的共同期望。然而,在变量和非静止社会环境中的语言使用需要语言表征来灵活:旧词在飞行中获取新的临时或合作伙伴特定含义。在本文中,我们介绍了柴(通过推理的连续分层适应),一个分层贝叶斯的协调理论和会议组织,旨在在这两个基本观察之间调和长期张力。我们认为,沟通的中央计算问题不仅仅是传输,如在经典配方中,而是在多个时间尺度上持续学习和适应。合作伙伴特定的共同点迅速出现在数型互动中的社会推论中,而社群范围内的社会公约是稳定的前锋,这些前锋已经抽象出与多个合作伙伴的互动。我们展示了新的实证数据,展示了我们的模型为多个现象提供了对先前账户挑战的计算基础:(1)与同一合作伙伴的重复互动的更有效的参考表达的融合(2)将合作伙伴特定的共同基础转移到陌生人,并(3)交际范围的影响最终会形成。
translated by 谷歌翻译
在流行媒体中,人造代理商的意识出现与同时实现人类或超人水平智力的那些相同的代理之间通常存在联系。在这项工作中,我们探讨了意识和智力之间这种看似直观的联系的有效性和潜在应用。我们通过研究与三种当代意识功能理论相关的认知能力:全球工作空间理论(GWT),信息生成理论(IGT)和注意力模式理论(AST)。我们发现,这三种理论都将有意识的功能专门与人类领域将军智力的某些方面联系起来。有了这个见解,我们转向人工智能领域(AI),发现尽管远未证明一般智能,但许多最先进的深度学习方法已经开始纳入三个功能的关键方面理论。确定了这一趋势后,我们以人类心理时间旅行的激励例子来提出方式,其中三种理论中每种理论的见解都可以合并为一个单一的统一和可实施的模型。鉴于三种功能理论中的每一种都可以通过认知能力来实现这一可能,因此,具有精神时间旅行的人造代理不仅具有比当前方法更大的一般智力,而且还与我们当前对意识功能作用的理解更加一致在人类中,这使其成为AI研究的有希望的近期目标。
translated by 谷歌翻译
集体行为在动物王国范围内普遍存在。然而,迄今为止,集体行为的发展和机械基础尚未正式建立。什么学会机制推动新生动物中集体行为的发展?在这里,我们使用了深度增强学习和好奇心驱动的学习 - 深深植根于心理和神经科学研究的两种学习机制 - 建立开发集体行为的新生人工代理。像新生动物一样,我们的代理商学习来自自然主义环境中的原始感官投入的集体行为。我们的代理商还学习没有外部奖励的集体行为,只使用内在的动机(好奇心)来推动学习。具体而言,当我们在具有组织中的自然视觉环境中提高人工剂时,该代理自发地发展为自我运动,对象识别,以及对组织的偏好,迅速学习集体行为所需的所有核心技能。这项工作桥接了高维感官输入和集体动作之间的划分,导致了集体动物行为的像素与动作模型。更一般地说,我们表明,两个通用学习机制 - 深度加强学习和好奇心驱动的学习 - 足以学习来自无监督的自然体验的集体行为。
translated by 谷歌翻译
Curiosity for machine agents has been a focus of lively research activity. The study of human and animal curiosity, particularly specific curiosity, has unearthed several properties that would offer important benefits for machine learners, but that have not yet been well-explored in machine intelligence. In this work, we conduct a comprehensive, multidisciplinary survey of the field of animal and machine curiosity. As a principal contribution of this work, we use this survey as a foundation to introduce and define what we consider to be five of the most important properties of specific curiosity: 1) directedness towards inostensible referents, 2) cessation when satisfied, 3) voluntary exposure, 4) transience, and 5) coherent long-term learning. As a second main contribution of this work, we show how these properties may be implemented together in a proof-of-concept reinforcement learning agent: we demonstrate how the properties manifest in the behaviour of this agent in a simple non-episodic grid-world environment that includes curiosity-inducing locations and induced targets of curiosity. As we would hope, our example of a computational specific curiosity agent exhibits short-term directed behaviour while updating long-term preferences to adaptively seek out curiosity-inducing situations. This work, therefore, presents a landmark synthesis and translation of specific curiosity to the domain of machine learning and reinforcement learning and provides a novel view into how specific curiosity operates and in the future might be integrated into the behaviour of goal-seeking, decision-making computational agents in complex environments.
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
人们容易概括到新型域和刺激的知识。我们提出了一种在计算模型中实例化的理论,基于跨域人类中的跨域泛化是对结构化(即,象征性)关系表示的模拟推断的情况。该模型是LISA和关系推论和学习的DORA模型的延伸。生成的模型在没有监控的情况下,从非关系输入中的关系和格式(即结构)(即,结构)既与强化学习的容量增强,利用这些表示来学习单个域,然后向新域推广首先通过模拟推理(即零拍摄学习)。我们展示了模型从各种简单的视觉刺激学习结构化关系表示的能力,并在视频游戏(突破和乒乓球)和几个心理任务之间进行跨域泛化。我们展示了模型的轨迹在学到关系时,旨在让孩子的轨迹镜头紧密地镜子,从文学中占据了儿童推理和类比制作的文献中的现象。该模型在域之间的概括能力展示了在其基础关系结构方面代表域的灵活性,而不是简单地就其投入和产出之间的统计关系而言。
translated by 谷歌翻译
The reinforcement learning paradigm is a popular way to address problems that have only limited environmental feedback, rather than correctly labeled examples, as is common in other machine learning contexts. While significant progress has been made to improve learning in a single task, the idea of transfer learning has only recently been applied to reinforcement learning tasks. The core idea of transfer is that experience gained in learning to perform one task can help improve learning performance in a related, but different, task. In this article we present a framework that classifies transfer learning methods in terms of their capabilities and goals, and then use it to survey the existing literature, as well as to suggest future directions for transfer learning work.
translated by 谷歌翻译
我们分析了学习型号(如神经网络)本身是优化器时发生的学习优化的类型 - 我们将作为MESA优化的情况,我们在本文中介绍的新闻。我们认为,MESA优化的可能性为先进机器学习系统的安全和透明度提出了两个重要问题。首先,在什么情况下学习模型是优化的,包括当他们不应该?其次,当学习模型是优化器时,它的目标是什么 - 它将如何与损失函数不同,它训练的损失 - 并且如何对齐?在本文中,我们对这两个主要问题进行了深入的分析,并提供了未来研究的主题概述。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
最近围绕语言处理模型的复杂性的最新炒作使人们对机器获得了类似人类自然语言的指挥的乐观情绪。人工智能中自然语言理解的领域声称在这一领域取得了长足的进步,但是,在这方面和其他学科中使用“理解”的概念性清晰,使我们很难辨别我们实际上有多近的距离。目前的方法和剩余挑战的全面,跨学科的概述尚待进行。除了语言知识之外,这还需要考虑我们特定于物种的能力,以对,记忆,标签和传达我们(足够相似的)体现和位置经验。此外,测量实际约束需要严格分析当前模型的技术能力,以及对理论可能性和局限性的更深入的哲学反思。在本文中,我将所有这些观点(哲学,认知语言和技术)团结在一起,以揭开达到真实(人类般的)语言理解所涉及的挑战。通过解开当前方法固有的理论假设,我希望说明我们距离实现这一目标的实际程度,如果确实是目标。
translated by 谷歌翻译
深入学习的强化学习(RL)的结合导致了一系列令人印象深刻的壮举,许多相信(深)RL提供了一般能力的代理。然而,RL代理商的成功往往对培训过程中的设计选择非常敏感,这可能需要繁琐和易于易于的手动调整。这使得利用RL对新问题充满挑战,同时也限制了其全部潜力。在许多其他机器学习领域,AutomL已经示出了可以自动化这样的设计选择,并且在应用于RL时也会产生有希望的初始结果。然而,自动化强化学习(AutorL)不仅涉及Automl的标准应用,而且还包括RL独特的额外挑战,其自然地产生了不同的方法。因此,Autorl已成为RL中的一个重要研究领域,提供来自RNA设计的各种应用中的承诺,以便玩游戏等游戏。鉴于RL中考虑的方法和环境的多样性,在不同的子领域进行了大部分研究,从Meta学习到进化。在这项调查中,我们寻求统一自动的领域,我们提供常见的分类法,详细讨论每个区域并对研究人员来说是一个兴趣的开放问题。
translated by 谷歌翻译
关于人类阅读的研究长期以来一直记录在阅读行为表明特定于任务的效果,但是建立一个通用模型来预测人类在给定任务中将显示什么的通用模型。我们介绍了Neat,这是人类阅读中注意力分配的计算模型,基于人类阅读优化了一项任务中关注经济和成功之间的权衡。我们的模型是使用当代神经网络建模技术实施的,并对注意力分配的分配方式在不同任务中如何变化做出明确的测试预测。我们在一项针对阅读理解任务的两个版本的眼影研究中对此进行了测试,发现我们的模型成功说明了整个任务的阅读行为。因此,我们的工作提供了证据表明,任务效果可以建模为对任务需求的最佳适应。
translated by 谷歌翻译
一个令人着迷的假设是,人类和动物的智力可以通过一些原则(而不是启发式方法的百科全书清单)来解释。如果这个假设是正确的,我们可以更容易地理解自己的智能并建造智能机器。就像物理学一样,原理本身不足以预测大脑等复杂系统的行为,并且可能需要大量计算来模拟人类式的智力。这一假设将表明,研究人类和动物所剥削的归纳偏见可以帮助阐明这些原则,并为AI研究和神经科学理论提供灵感。深度学习已经利用了几种关键的归纳偏见,这项工作考虑了更大的清单,重点是关注高级和顺序有意识的处理的工作。阐明这些特定原则的目的是,它们有可能帮助我们建立从人类的能力中受益于灵活分布和系统概括的能力的AI系统,目前,这是一个领域艺术机器学习和人类智力。
translated by 谷歌翻译
内容的离散和连续表示(例如,语言或图像)具有有趣的属性,以便通过机器的理解或推理此内容来探索或推理。该职位论文提出了我们关于离散和持续陈述的作用及其在深度学习领域的作用的意见。目前的神经网络模型计算连续值数据。信息被压缩成密集,分布式嵌入式。通过Stark对比,人类在他们的语言中使用离散符号。此类符号代表了来自共享上下文信息的含义的世界的压缩版本。此外,人工推理涉及在认知水平处符号操纵,这促进了抽象的推理,知识和理解的构成,泛化和高效学习。通过这些见解的动机,在本文中,我们认为,结合离散和持续的陈述及其处理对于构建展示一般情报形式的系统至关重要。我们建议并讨论了几个途径,可以在包含离散元件来结合两种类型的陈述的优点来改进当前神经网络。
translated by 谷歌翻译
机器学习和认知科学的最新工作表明,了解因果信息对于智力的发展至关重要。使用``Blicket otter''环境的认知科学的广泛文献表明,孩子们擅长多种因果推理和学习。我们建议将该环境适应机器​​学习代理。当前机器学习算法的关键挑战之一是建模和理解因果关系:关于因果关系集的可转移抽象假设。相比之下,即使是幼儿也会自发学习和使用因果关系。在这项工作中,我们提出了一个新的基准 - 一种灵活的环境,可以评估可变因果溢出物下的现有技术 - 并证明许多现有的最新方法在这种环境中概括了困难。该基准的代码和资源可在https://github.com/cannylab/casual_overhypothess上获得。
translated by 谷歌翻译