Visual question answering (VQA) is challenging not only because the model has to handle multi-modal information, but also because it is just so hard to collect sufficient training examples -- there are too many questions one can ask about an image. As a result, a VQA model trained solely on human-annotated examples could easily over-fit specific question styles or image contents that are being asked, leaving the model largely ignorant about the sheer diversity of questions. Existing methods address this issue primarily by introducing an auxiliary task such as visual grounding, cycle consistency, or debiasing. In this paper, we take a drastically different approach. We found that many of the "unknowns" to the learned VQA model are indeed "known" in the dataset implicitly. For instance, questions asking about the same object in different images are likely paraphrases; the number of detected or annotated objects in an image already provides the answer to the "how many" question, even if the question has not been annotated for that image. Building upon these insights, we present a simple data augmentation pipeline SimpleAug to turn this "known" knowledge into training examples for VQA. We show that these augmented examples can notably improve the learned VQA models' performance, not only on the VQA-CP dataset with language prior shifts but also on the VQA v2 dataset without such shifts. Our method further opens up the door to leverage weakly-labeled or unlabeled images in a principled way to enhance VQA models. Our code and data are publicly available at https://github.com/heendung/simpleAUG.
translated by 谷歌翻译
数据增强(DA) - 在原始培训集中生成额外的培训样本 - 在当今无偏见的VQA模型中已广泛使用,以减轻语言偏见。当前的主流DA策略是基于合成的方法,它通过编辑某些视觉区域/单词或从头开始重新生成它们来合成新样本。但是,这些合成样品始终是不自然的和错误的。为了避免此问题,最近的DA工作通过随机配对原始图像和其他人为编写的问题来构成新的增强样品。不幸的是,为了确保增强样品具有合理的基础答案,他们手动为几种问题类型设计了一套启发式规则,这极大地限制了其概括能力。为此,我们提出了一种新的基于知识蒸馏的数据增强,以称为Kddaug。具体而言,我们首先放松合理图像问题对的要求,可以轻松地应用于任何问题类型。然后,我们设计了一个基于知识蒸馏(KD)的答案分配,以生成所有组成图像问题对的伪答案,这些答案对内域和分布外设置都很健壮。由于Kddaug是一种模型不合时宜的DA策略,因此可以将其无缝合并到任何VQA架构中。关于多个骨干和基准测试的大量消融研究证明了Kddaug的有效性和概括能力。
translated by 谷歌翻译
Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in
translated by 谷歌翻译
视觉问题应答(VQA)是一个具有挑战性的任务,在计算机视觉和自然语言处理领域中引起了越来越多的关注。然而,目前的视觉问题回答具有语言偏差问题,这减少了模型的稳健性,对视觉问题的实际应用产生了不利影响。在本文中,我们首次对该领域进行了全面的审查和分析,并根据三个类别对现有方法进行分类,包括增强视觉信息,弱化语言前瞻,数据增强和培训策略。与此同时,依次介绍相关的代表方法,依次汇总和分析。揭示和分类语言偏见的原因。其次,本文介绍了主要用于测试的数据集,并报告各种现有方法的实验结果。最后,我们讨论了该领域的可能的未来研究方向。
translated by 谷歌翻译
视觉问题的视觉关注在视觉问题上应答(VQA)目标在定位有关答案预测的右图像区域,提供强大的技术来促进多模态理解。然而,最近的研究指出,来自视觉关注的突出显示的图像区域通常与给定的问题和答案无关,导致模型混淆正确的视觉推理。为了解决这个问题,现有方法主要是为了对准人类关注的视觉注意力。尽管如此,收集这种人类数据是费力且昂贵的,使其在数据集中调整良好开发的模型。为了解决这个问题,在本文中,我们设计了一种新的视觉关注正规化方法,即attreg,以便在VQA中更好地视觉接地。具体而言,attraT首先识别了由骨干模型出乎意料地忽略(即,分配低注意重量)的问题所必需的图像区域。然后,利用掩模引导的学习方案来规范视觉注意力,以便更多地关注这些忽略的关键区域。所提出的方法是非常灵活的,模型不可知,可以集成到基于大多数基于视觉关注的VQA模型中,并且不需要人类注意监督。已经进行了三个基准数据集,即VQA-CP V2,VQA-CP V1和VQA V2的广泛实验,以评估attreg的有效性。作为副产品,将Attreg纳入强基线LMH时,我们的方法可以实现新的最先进的准确性为60.00%,在VQA-CP V2基准数据集上绝对性能增益为7.01%。 。
translated by 谷歌翻译
我们介绍了视觉问题应答(VQA)的评估方法,以更好地诊断捷径学习案例。当模型利用虚假统计规则产生正确答案但实际上没有部署所需的行为时,会发生这些情况。需要在数据集中识别可能的快捷方式,并在部署现实世界中的模型之前评估它们的使用。 VQA的研究界专注于基于问题的快捷方式,其中模型可能是通过依赖于先前的问题条件培训并提供重量的问题条件培训来回答“天空的颜色”。视觉证据。我们进一步逐步,考虑涉及两个问题和图像的多模式捷径。我们首先通过挖掘琐碎的预测规则,例如诸如单词和视觉元素的共同发生的琐碎的预测规则来确定流行的VQA V2培训中的潜在捷径。然后,我们将介绍VQA-Consterexamples(VQA-CE),一个评估协议,基于我们的反例等的子集i.e.图像 - 问题答案三胞胎,我们的规则导致错误的答案。我们在大规模研究VQA现有方法中使用这一新评估。我们表明即使是最先进的模型也表现不佳,并且在这种情况下,降低偏差的现有技术在很大程度上无效。我们的研究结果表明,过去的vqa中的基于问题的偏差的工作仅签署了一个复杂问题的一个方面。我们方法的代码可在https://github.com/cdancette/detect-shortcut中获得。
translated by 谷歌翻译
文本VQA旨在回答需要了解图像中文本提示的问题。尽管现有的文本VQA方法取得了长足的进步,但它们的性能仍遭受了人类标记的问题解答(QA)对不足。但是,我们观察到,通常在现有数据集中没有完全利用场景文本 - 每个图像中只有一小部分文本参与了带注释的QA活动。这导致大量有用的信息浪费。为了解决这种缺陷,我们开发了一种新方法来通过明确利用每个图像的场景上下文中可用的现有文本来生成高质量和多样化的质量质量对。具体而言,我们建议,TAG是一种文本感知的视觉问题 - 答案生成的结构,该结构学会使用多模式变压器来生成有意义且准确的QA样品。该体系结构通过将生成的QA对与初始培训数据相结合,从而利用了未充满激光的场景文本信息,并增强了文本VQA模型的场景理解。对两个众所周知的Text-VQA基准(TextVQA和ST-VQA)的广泛实验结果表明,我们提议的标签有效地扩大了训练数据,有助于提高文本VQA性能而无需额外的标签努力。此外,我们的模型优于预先通过大规模数据进行训练的最先进方法。代码将公开可用。
translated by 谷歌翻译
基于知识的视觉问题的问题涉及除了图像内容之外还涉及需要外部知识的问题。这些知识通常有各种形式,包括视觉,文本和致辞知识。使用更多知识来源,增加了检索更无关紧要或嘈杂的事实的可能性,使其充实并找到答案的挑战。为了解决这一挑战,我们使用外部知识(MAVEX)提出了多模态答案验证,其中该想法是根据答案特定知识检索验证一组有希望的答案候选者。而不是在大多数现有方法中搜索大量不相关的事实中的答案,Mavex旨在学习如何从嘈杂来源中提取相关知识,这是对每个答复候选者的信任,以及如何使用候选者那个来源。除了以维基百科句子和概念概念的形式之外,我们的多模态设置是第一个利用外部视觉知识(使用谷歌搜索的图像)。我们的实验与OK-VQA是一个具有挑战性的知识VQA数据集,证明了MAVEX实现了新的最先进的结果。我们的代码可在https://github.com/jialinwu17/mavex提供
translated by 谷歌翻译
A number of studies have found that today's Visual Question Answering (VQA) models are heavily driven by superficial correlations in the training data and lack sufficient image grounding. To encourage development of models geared towards the latter, we propose a new setting for VQA where for every question type, train and test sets have different prior distributions of answers. Specifically, we present new splits of the VQA v1 and VQA v2 datasets, which we call Visual Question Answering under Changing Priors (VQA-CP v1 and VQA-CP v2 respectively). First, we evaluate several existing VQA models under this new setting and show that their performance degrades significantly compared to the original VQA setting. Second, we propose a novel Grounded Visual Question Answering model (GVQA) that contains inductive biases and restrictions in the architecture specifically designed to prevent the model from 'cheating' by primarily relying on priors in the training data. Specifically, GVQA explicitly disentangles the recognition of visual concepts present in the image from the identification of plausible answer space for a given question, enabling the model to more robustly generalize across different distributions of answers. GVQA is built off an existing VQA model -Stacked Attention Networks (SAN). Our experiments demonstrate that GVQA significantly outperforms SAN on both VQA-CP v1 and VQA-CP v2 datasets. Interestingly, it also outperforms more powerful VQA models such as Multimodal Compact Bilinear Pooling (MCB) in several cases. GVQA offers strengths complementary to SAN when trained and evaluated on the original VQA v1 and VQA v2 datasets. Finally, GVQA is more transparent and interpretable than existing VQA models.
translated by 谷歌翻译
最近,3D视觉和语言任务吸引了不断增长的研究兴趣。与其他视觉和语言任务相比,3D视觉问题回答(VQA)任务的利用较小,并且更容易受到语言先验和共同参考的歧义。同时,由于规模和注释方法有限,最近提出的几个3D VQA数据集并不能很好地支持3D VQA任务。在这项工作中,我们通过收集一个新的3D VQA数据集(称为FE-3DGQA),正式定义和解决3D接地的VQA任务,并具有多样化且相对自由形式的提问,以及密集和完全接地的边界框注释。为了获得更多可解释的答案,我们标记了出现在复杂的质量检查对中的对象,该对象具有不同的语义类型,包括答案接地的对象(均出现并未出现在问题中),以及用于答案的对象的上下文对象。我们还提出了一个新的3D VQA框架,以有效地预测完全视觉扎根和可解释的答案。广泛的实验证明,我们新收集的基准数据集可有效地用于评估不同方面的各种3D VQA方法,而我们新提出的框架也可以在新的基准数据集中实现最新的性能。新收集的数据集和我们的代码都将在http://github.com/zlccccc/3dgqa上公开获得。
translated by 谷歌翻译
最近的几项研究指出,现有的视觉问题回答(VQA)模型严重遭受了先前的问题的困扰,这是指捕获问题类型和答案之间的表面统计相关性,而忽略了图像内容。通过创建精致的模型或引入额外的视觉注释,已经致力于加强图像依赖性。但是,这些方法无法充分探索视觉提示如何显式影响学习的答案表示,这对于减轻语言的依赖至关重要。此外,他们通常强调对学习的答案表示形式的班级歧视,这忽略了更精细的实例级别模式,并要求进一步优化。在本文中,我们从视觉扰动校准的角度提出了一种新颖的协作学习方案,该方案可以更好地研究细粒度的视觉效果,并通过学习实例级别的特征来减轻语言的先验问题。具体而言,我们设计了一个视觉控制器来构建具有不同扰动范围的两种策划图像,基于该图像的协作学习内置不变性和实体歧视的协作学习由两个精心设计的歧视者实现。此外,我们在潜在空间上实施信息瓶颈调制器,以进一步减轻偏见和表示校准。我们将视觉扰动感知框架强加于三个正统基准,并将实验结果对两个诊断性VQA-CP基准数据集进行了实验结果,显然表明了其有效性。此外,我们还证明了它在平衡的VQA基准上的鲁棒性是合理的。
translated by 谷歌翻译
医学视觉问题应答(VQA)是医疗人工智能和流行的VQA挑战的组合。鉴于医学形象和在自然语言中的临床相关问题,预计医疗VQA系统将预测符号和令人信服的答案。虽然一般域VQA已被广泛研究,但医疗VQA仍然需要特定的调查和探索,因为它的任务特征是。在本调查的第一部分,我们涵盖并讨论了关于数据源,数据数量和任务功能的公开可用的医疗VQA数据集。在第二部分中,我们审查了医疗VQA任务中使用的方法。在最后,我们分析了该领域的一些有效的挑战,并讨论了未来的研究方向。
translated by 谷歌翻译
Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.
translated by 谷歌翻译
We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages Visual Genome scene graph structures to create 22M diverse reasoning questions, which all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. A careful analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains a mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding of vision and language.
translated by 谷歌翻译
Visual commonsense understanding requires Vision Language (VL) models to not only understand image and text but also cross-reference in-between to fully integrate and achieve comprehension of the visual scene described. Recently, various approaches have been developed and have achieved high performance on visual commonsense benchmarks. However, it is unclear whether the models really understand the visual scene and underlying commonsense knowledge due to limited evaluation data resources. To provide an in-depth analysis, we present a Multimodal Evaluation (ME) pipeline to automatically generate question-answer pairs to test models' understanding of the visual scene, text, and related knowledge. We then take a step further to show that training with the ME data boosts the model's performance in standard VCR evaluation. Lastly, our in-depth analysis and comparison reveal interesting findings: (1) semantically low-level information can assist the learning of high-level information but not the opposite; (2) visual information is generally under utilization compared with text.
translated by 谷歌翻译
最近的研究表明,许多发达的视觉问题的答案(VQA)模型受到先前问题的严重影响,这是指基于文本问题和答案之间的共同发生模式来提出预测而不是推理视觉内容。为了解决它,大多数现有方法都侧重于增强视觉特征学习,以减少对VQA模型决策的这种肤浅的快捷方式影响。然而,有限的努力已经致力于为其固有原因提供明确的解释。因此,缺乏以有目的的方式向前迈出前进的良好指导,导致模型构建困惑在克服这种非琐碎问题时。在本文中,我们建议从类 - 不平衡视图中解释VQA中的语言。具体地,我们设计了一种新颖的解释方案,从而在晚期训练阶段明显展出了误差频繁和稀疏答案的丢失。它明确揭示了为什么VQA模型倾向于产生频繁但是明显的错误答案,给出的给定问题,其正确答案在训练集中稀疏。基于此观察,我们进一步开发了一种新的损失重新缩放方法,以基于计算最终损失的训练数据统计来为每个答案分配不同权重。我们将我们的方法应用于三个基线,两个VQA-CP基准数据集的实验结果明显证明了其有效性。此外,我们还可以证明在其他计算机视觉任务上的类别不平衡解释方案的有效性,例如面部识别和图像分类。
translated by 谷歌翻译
视觉问题应答(VQA)任务利用视觉图像和语言分析来回回答图像的文本问题。它是一个流行的研究课题,在过去十年中越来越多的现实应用。本文介绍了我们最近对AliceMind-MMU的研究(阿里巴巴的编码器 - 解码器来自Damo Academy - 多媒体理解的机器智能实验室),其比人类在VQA上获得相似甚至略微更好的结果。这是通过系统地改善VQA流水线来实现的,包括:(1)具有全面的视觉和文本特征表示的预培训; (2)与学习参加的有效跨模型互动; (3)一个新颖的知识挖掘框架,具有专门的专业专家模块,适用于复杂的VQA任务。处理不同类型的视觉问题,需要具有相应的专业知识在提高我们的VQA架构的表现方面发挥着重要作用,这取决于人力水平。进行了广泛的实验和分析,以证明新的研究工作的有效性。
translated by 谷歌翻译
尽管视觉问题答案取得了长足的进步(VQA),但当前的VQA模型严重依赖问题类型及其相应的频繁答案(即语言先验)之间的表面相关性来做出预测,而无需真正理解输入。在这项工作中,我们用相同的问题类型定义了培训实例,但与\ textit {表面上相似的实例}定义了不同的答案,并将语言先验归因于VQA模型在此类情况下的混淆。为了解决这个问题,我们提出了一个新颖的培训框架,该培训框架明确鼓励VQA模型区分表面上相似的实例。具体而言,对于每个培训实例,我们首先构建一个包含其表面上相似的对应物的集合。然后,我们利用所提出的区分模块增加了答案空间中实例及其对应物之间的距离。这样,VQA模型被迫进一步关注问题类型的输入的其他部分,这有助于克服语言先验。实验结果表明,我们的方法在VQA-CP V2上实现了最新性能。代码可在\ href {https://github.com/wyk-nku/distinguishing-vqa.git} {sickithing-vqa}中获得。
translated by 谷歌翻译
视觉问题回答(VQA)近年来见证了巨大进展。但是,大多数努力只关注2D图像问题应答任务。在本文中,我们介绍了将VQA扩展到3D域的第一次尝试,这可以促进人工智能对3D现实世界情景的看法。与基于图像的VQA不同,3D问题应答(3DQA)将颜色点云作为输入,需要外观和3D几何理解能力来回答3D相关问题。为此,我们提出了一种基于新颖的基于变换器的3DQA框架\ TextBF {“3DQA-TR”},其包括两个编码器,分别用于利用外观和几何信息。外观,几何和的多模码信息语言问题最终可以通过3D语言伯特互相参加,以预测目标答案。要验证我们提出的3DQA框架的有效性,我们还开发了第一个建立的3DQA DataSet \ TextBF {“scanqa”} SCANNet DataSet并包含$ \ SIM $ 6K问题,$ \ SIM $ 30k答案,可满足806美元的场景。在此数据集上的广泛实验展示了我们提出的3DQA框架在现有的VQA框架上的明显优势,以及我们主要设计的有效性。我们的代码和数据集将公开可用于促进此方向的研究。
translated by 谷歌翻译
神经网络通常使预测依赖于数据集的虚假相关性,而不是感兴趣的任务的内在特性,面对分布外(OOD)测试数据的急剧下降。现有的De-Bias学习框架尝试通过偏置注释捕获特定的DataSet偏差,它们无法处理复杂的“ood方案”。其他人在低能力偏置模型或损失上隐含地识别数据集偏置,但在训练和测试数据来自相同分布时,它们会降低。在本文中,我们提出了一般的贪婪去偏见学习框架(GGD),它贪婪地训练偏置模型和基础模型,如功能空间中的梯度下降。它鼓励基础模型专注于用偏置模型难以解决的示例,从而仍然在测试阶段中的杂散相关性稳健。 GGD在很大程度上提高了各种任务的模型的泛化能力,但有时会过度估计偏置水平并降低在分配测试。我们进一步重新分析了GGD的集合过程,并将课程正规化为由课程学习启发的GGD,这取得了良好的分配和分发性能之间的权衡。对图像分类的广泛实验,对抗问题应答和视觉问题应答展示了我们方法的有效性。 GGD可以在特定于特定于任务的偏置模型的设置下学习更强大的基础模型,其中具有现有知识和自组合偏置模型而无需先验知识。
translated by 谷歌翻译