识别非线性动态系统的控制方程是理解系统物理特征的关键,并构建概括超出可用数据的动态的准确模型。我们提出了一种用于发现这些管理方程的机器学习框架,仅使用部分观察,将编码器与稀疏符号模型相结合。我们的测试表明,此方法可以成功地重建完整的系统状态,并确定各种颂歌和PDE系统的底层动态。
translated by 谷歌翻译
在科学的背景下,众所周知的格言“一张图片胜过千言万语”可能是“一个型号胜过一千个数据集”。在本手稿中,我们将Sciml软件生态系统介绍作为混合物理法律和科学模型的信息,并使用数据驱动的机器学习方法。我们描述了一个数学对象,我们表示通用微分方程(UDE),作为连接生态系统的统一框架。我们展示了各种各样的应用程序,从自动发现解决高维汉密尔顿 - Jacobi-Bellman方程的生物机制,可以通过UDE形式主义和工具进行措辞和有效地处理。我们展示了软件工具的一般性,以处理随机性,延迟和隐式约束。这使得各种SCIML应用程序变为核心训练机构的核心集,这些训练机构高度优化,稳定硬化方程,并与分布式并行性和GPU加速器兼容。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
许多物理过程,例如天气现象或流体力学由部分微分方程(PDE)管辖。使用神经网络建模这种动态系统是一个新兴的研究领域。然而,目前的方法以各种方式限制:它们需要关于控制方程的先验知识,并限于线性或一阶方程。在这项工作中,我们提出了一种将卷积神经网络(CNNS)与可微分的颂歌求解器结合到模型动力系统的模型。我们表明,标准PDE求解器中使用的线路方法可以使用卷曲来表示,这使得CNN是对参数化任意PDE动态的自然选择。我们的模型可以应用于任何数据而不需要任何关于管理PDE的知识。我们评估通过求解各种PDE而产生的数据集的NeuralPDE,覆盖更高的订单,非线性方程和多个空间尺寸。
translated by 谷歌翻译
符号回归是一种机器学习技术,可以学习数据的管理公式,因此有可能改变科学发现。但是,符号回归仍然受到分析系统的复杂性和维度的限制。另一方面,深度学习改变了机器学习的能力,可以分析极其复杂和高维数据集。我们提出了一个神经网络体系结构,以将符号回归扩展到参数系统,其中某些系数可能会有所不同,但是基础管理方程的结构仍然恒定。我们演示了有关各种系数的各种分析表达式,ODE和PDE的方法,并表明它可以很好地推断出训练域之外。基于神经网络的体系结构还可以与其他深度学习体系结构集成,以便在端到端训练的同时分析高维数据。为此,我们将架构与卷积神经网络集成在一起,以分析不同弹簧系统的1D图像。
translated by 谷歌翻译
预测在环境中只有部分了解其动态的综合动态现象是各种科学领域的普遍存在问题。虽然纯粹的数据驱动方法在这种情况下可以说是不充分的,但是基于标准的物理建模的方法往往是过于简单的,诱导不可忽略的错误。在这项工作中,我们介绍了适当性框架,是一种具有深度数据驱动模型的微分方程所描述的不完整物理动态的原则方法。它包括将动态分解为两个组件:对我们有一些先验知识的动态的物理组件,以及物理模型错误的数据驱动组件核对。仔细制定学习问题,使得物理模型尽可能多地解释数据,而数据驱动组件仅描述了物理模型不能捕获的信息,不再少。这不仅为这种分解提供了存在和唯一性,而且还确保了可解释性和益处泛化。在三个重要用例中进行的实验,每个代表不同的现象,即反应 - 扩散方程,波动方程和非线性阻尼摆锤,表明,空间程度可以有效地利用近似物理模型来准确地预测系统的演变并正确识别相关的物理参数。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
在科学技术的许多领域中,从数据中提取理事物理学是一个关键挑战。方程发现的现有技术取决于输入和状态测量。但是,实际上,我们只能访问输出测量。我们在这里提出了一个新的框架,用于从输出测量中学习动态系统的物理学;这本质上将物理发现问题从确定性转移到随机域。提出的方法将输入模拟为随机过程,并将随机演算,稀疏学习算法和贝叶斯统计的概念融合在一起。特别是,我们将稀疏性结合起来,促进尖峰和平板先验,贝叶斯法和欧拉·马鲁山(Euler Maruyama)计划,以从数据中识别统治物理。最终的模型高效,可以进行稀疏,嘈杂和不完整的输出测量。在涉及完整状态测量和部分状态测量的几个数值示例中说明了所提出方法的功效和鲁棒性。获得的结果表明,拟议方法仅从产出测量中识别物理学的潜力。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
Given ample experimental data from a system governed by differential equations, it is possible to use deep learning techniques to construct the underlying differential operators. In this work we perform symbolic discovery of differential operators in a situation where there is sparse experimental data. This small data regime in machine learning can be made tractable by providing our algorithms with prior information about the underlying dynamics. Physics Informed Neural Networks (PINNs) have been very successful in this regime (reconstructing entire ODE solutions using only a single point or entire PDE solutions with very few measurements of the initial condition). We modify the PINN approach by adding a neural network that learns a representation of unknown hidden terms in the differential equation. The algorithm yields both a surrogate solution to the differential equation and a black-box representation of the hidden terms. These hidden term neural networks can then be converted into symbolic equations using symbolic regression techniques like AI Feynman. In order to achieve convergence of these neural networks, we provide our algorithms with (noisy) measurements of both the initial condition as well as (synthetic) experimental data obtained at later times. We demonstrate strong performance of this approach even when provided with very few measurements of noisy data in both the ODE and PDE regime.
translated by 谷歌翻译
在本文中,我们提出了一种深度学习技术,用于数据驱动的流体介质中波传播的预测。该技术依赖于基于注意力的卷积复发自动编码器网络(AB-CRAN)。为了构建波传播数据的低维表示,我们采用了基于转化的卷积自动编码器。具有基于注意力的长期短期记忆细胞的AB-CRAN体系结构构成了我们的深度神经网络模型,用于游行低维特征的时间。我们评估了针对标准复发性神经网络的拟议的AB-Cran框架,用于波传播的低维学习。为了证明AB-Cran模型的有效性,我们考虑了三个基准问题,即一维线性对流,非线性粘性汉堡方程和二维圣人浅水系统。我们的新型AB-CRAN结构使用基准问题的空间 - 时空数据集,可以准确捕获波幅度,并在长期范围内保留溶液的波特性。与具有长期短期记忆细胞的标准复发性神经网络相比,基于注意力的序列到序列网络增加了预测的时间莫。 Denoising自动编码器进一步减少了预测的平方平方误差,并提高了参数空间中的概括能力。
translated by 谷歌翻译
来自数据的顺序模式是各种时间序列预测任务的核心。深度学习模型大大优于许多传统模型,但是这些黑框模型通常缺乏预测和决策的解释性。为了揭示具有可理解的数学表达式的潜在趋势,科学家和经济学家倾向于使用部分微分方程(PDE)来解释顺序模式的高度非线性动力学。但是,它通常需要领域专家知识和一系列简化的假设,这些假设并不总是实用的,并且可能偏离不断变化的世界。是否可以动态地学习与数据的差异关系以解释时间不断发展的动态?在这项工作中,我们提出了一个学习框架,该框架可以自动从顺序数据中获取可解释的PDE模型。特别是,该框架由可学习的差分块组成,称为$ p $ blocks,事实证明,该框架能够近似于理论上随着时间不断变化的复杂连续功能。此外,为了捕获动力学变化,该框架引入了元学习控制器,以动态优化混合PDE模型的超参数。 《时代》系列预测金融,工程和健康数据的广泛实验表明,我们的模型可以提供有价值的解释性并实现与最先进模型相当的性能。从经验研究中,我们发现学习一些差异操作员可能会捕获无需大量计算复杂性的顺序动力学的主要趋势。
translated by 谷歌翻译
我们提出了一种基于机器学习的方法来解决运输过程的研究,在连续力学中无处不在,特别关注那些由复杂的微物理学统治的那些现象,对理论调查不切实际,但表现出由闭合的数学表达可以描述的紧急行为。我们的机器学习模型,使用简单组件建造以及若干知名实践,能够学习运输过程的潜在表示,从标称误差表征数据的标称误差导致声音泛化属性,可以比预期更接近地面真理。通过对融合和宇宙等离子体相关的热通量抑制的长期问题的理想研究来证明这一点。 Our analysis shows that the result applies beyond those case specific assumptions and that, in particular, the accuracy of the learned representation is controllable through knowledge of the data quality (error properties) and a suitable choice of the dataset size.虽然学习的表示可以用作数值建模目的的插件,但是也可以利用上述误差分析来获得描述传输机制和理论值的可靠的数学表达式。
translated by 谷歌翻译
从非线性系统中提取预测模型是科学机器学习中的一个中心任务。一个关键问题是现代数据驱动方法与第一个原则之间的对帐。尽管机器学习技术快速进展,但将域知识嵌入到数据驱动的模型中仍然是一个挑战。在这项工作中,我们为基于观察的非线性系统提取了一个通用学习框架,用于从非线性系统中提取预测模型。我们的框架可以容易地纳入第一个原理知识,因为它自然地模拟非线性系统作为连续时间系统。这两种都改善了提取的模型的外推功率,并减少了培训所需的数据量。此外,我们的框架还具有对观察噪声的稳健和适用性的优点,不规则采样数据。我们通过学习各种系统的预测模型来展示我们方案的有效性,包括普拉登·德隆振荡器,Lorenz系统和Kuramoto-Sivashinsky方程。对于Lorenz系统,并入不同类型的域知识,以展示数据驱动系统识别中的知识强度。
translated by 谷歌翻译
神经网络具有充当通用函数近似器的能力,但它们不可解释,并且在其训练区域之外也不能概括。在尝试将标准神经普通微分方程(神经ODE)应用于动态系统时,这两个问题都是有问题的。我们介绍了多项式神经ODE,这是神经ode框架内部的深层神经网络。我们证明了多项式神经ODE的能力,可以预测训练区域外部,并在没有其他工具(例如Sindy)的情况下进行直接符号回归。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
封闭形式的微分方程,包括部分微分方程和高阶普通微分方程,是科学家用来建模和更好地理解自然现象的最重要工具之一。直接从数据中发现这些方程是具有挑战性的,因为它需要在数据中未观察到的各种衍生物之间建模关系(\ textit {equation-data不匹配}),并且涉及在可能的方程式的巨大空间中搜索。当前的方法对方程式的形式做出了强烈的假设,因此未能发现许多知名系统。此外,其中许多通过估计衍生物来解决方程数据不匹配,这使得它们不足以噪音且不经常采样系统。为此,我们提出了D-Cipher,这对测量工件非常健壮,可以发现新的且非常通用的微分方程类别。我们进一步设计了一种新颖的优化程序Collie,以帮助D-Cipher搜索该课程。最后,我们从经验上证明,它可以发现许多众所周知的方程,这些方程超出了当前方法的功能。
translated by 谷歌翻译
拟合科学数据的部分微分方程(PDE)可以用可解释的机制来代表各种以数学为导向的受试者的物理定律。从科学数据中发现PDE的数据驱动的发现蓬勃发展,作为对自然界中复杂现象进行建模的新尝试,但是当前实践的有效性通常受数据的稀缺性和现象的复杂性的限制。尤其是,从低质量数据中发现具有高度非线性系数的PDE在很大程度上已经不足。为了应对这一挑战,我们提出了一种新颖的物理学指导学习方法,该方法不仅可以编码观察知识,例如初始和边界条件,而且还包含了基本的物理原理和法律来指导模型优化。我们从经验上证明,所提出的方法对数据噪声和稀疏性更为强大,并且可以将估计误差较大。此外,我们第一次能够发现具有高度非线性系数的PDE。凭借有希望的性能,提出的方法推动了PDE的边界,这可以通过机器学习模型来进行科学发现。
translated by 谷歌翻译
PDE发现显示了揭示复杂物理系统的预测模型,但在测量稀疏和嘈杂时难以困难。我们介绍了一种新方法,用于PDE发现,它使用两个合理的神经网络和原始的稀疏回归算法来识别管理系统响应的隐藏动态。第一网络了解系统响应函数,而第二个网络了解一个驱动系统演进的隐藏PDE。然后,我们使用无参数稀疏回归算法从第二网络中提取隐藏PDE的人类可读形式。我们在名为PDE-读取的开源库中实现了我们的方法。我们的方法成功地识别了热,汉堡和KorteDeg-de Vries方程,具有显着的一致性。我们表明,我们的方法对稀疏性和噪音都是前所未有的强大,因此适用于现实世界的观察数据。
translated by 谷歌翻译