Natural laws are often described through differential equations yet finding a differential equation that describes the governing law underlying observed data is a challenging and still mostly manual task. In this paper we make a step towards the automation of this process: we propose a transformer-based sequence-to-sequence model that recovers scalar autonomous ordinary differential equations (ODEs) in symbolic form from time-series data of a single observed solution of the ODE. Our method is efficiently scalable: after one-time pretraining on a large set of ODEs, we can infer the governing laws of a new observed solution in a few forward passes of the model. Then we show that our model performs better or on par with existing methods in various test cases in terms of accurate symbolic recovery of the ODE, especially for more complex expressions.
translated by 谷歌翻译
象征性回归,即预测从观察其值观察的功能,是一个具有挑战性的任务。在本文中,我们训练变压器来推断整数或浮点数序列的功能或复发关系,人类智商测试中的典型任务几乎不受机器学习文学。我们在OEIS序列子集上评估我们的整数模型,并表明它占据了内置数学函数的复发预测。我们还证明我们的浮动模型能够产生非词汇功能和常量的信息近似,例如,$ \ operatorname {bessel0}(x)\ intem \ frac {\ sin(x)+ \ cos(x)} $和$ 1.644934 \ atthe \ pi ^ 2/6 $。我们模型的互动演示是在HTTPS://bit.ly/3nie5fs提供的。
translated by 谷歌翻译
聚类函数(例如对数或差异)满足了许多代数身份。对于对数,所有身份都来自产品规则。对于Diologarithm和更高的经典细分线虫,这些身份可能涉及五个或更多功能。在与粒子物理学相关的许多计算中,聚集体的复杂组合通常来自Feynman积分。尽管集成产生的初始表达通常简化,但通常很难知道要应用哪些身份以及按什么顺序应用。为了解决这种瓶颈,我们探索机器学习方法可以帮助您。我们考虑了一种强化学习方法,在该方法中,身份类似于游戏中的动作,也是变压器网络方法,在该方法中,该问题类似于语言翻译任务。尽管这两种方法都是有效的,但变压器网络似乎更强大,并且在数学物理学中的符号操纵任务中实现了实际使用的希望。
translated by 谷歌翻译
符号回归是识别拟合从黑盒过程中观察到的输出的数学表达式的过程。它通常认为是一个离散的优化问题是NP - 硬。解决问题的前提方法包括神经引导的搜索(例如,使用强化学习)和遗传编程。在这项工作中,我们介绍了一种混合神经引导/基因编程方法来象征性回归和其他组合优化问题。我们提出了一种神经引导组件,用于种子随机重启遗传编程组件的起始群体,逐渐学习更好的起始群体。在许多常见的基准任务中从数据集中恢复底层表达式,我们的方法使用相同的实验设置恢复比最近发布的顶部执行模型更多的表达式65%。我们证明在没有对神经引导的组件上的不相互依存的情况下运行许多遗传编程一代,而不是比两个更强烈地耦合的替代配方更好地对象征性回归更好地执行符号回归。最后,我们介绍了一组新的22个符号回归基准问题,而现有的基准难度增加。源代码在www.github.com/brendenpetersen/deep-symbolic -optimization提供。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
在许多科学领域中发现一个有意义的,尺寸同质的,象征性的表达是一个基本挑战。我们提出了一个新颖的开源计算框架,称为科学家机器方程探测器(Scimed),该框架将科学纪律智慧与科学家在循环的方法中融合在一起,并将其与最先进的符号回归(SR)方法相结合。Scimed将基于遗传算法的包装器选择方法与自动机器学习和两个SR方法结合在一起。我们对具有和没有非线性空气动力学阻力的球体沉降的四个配置进行了测试。我们表明,疲惫不堪的人足够坚固,可以从嘈杂的数据中发现正确的物理有意义的符号表达式。我们的结果表明,与最先进的SR软件包相比,这些任务的性能更好。
translated by 谷歌翻译
基于原子量表的材料建模在新材料的发展及其特性的理解中起着重要作用。粒子模拟的准确性由原子间电位确定,该电位允许计算原子系统的势能作为原子坐标和潜在的其他特性的函数。基于原理的临界电位可以达到任意水平的准确性,但是它们的合理性受其高计算成本的限制。机器学习(ML)最近已成为一种有效的方法,可以通过用经过电子结构数据培训的高效替代物代替昂贵的模型来抵消Ab始于原子电位的高计算成本。在当前大量方法中,符号回归(SR)正在成为一种强大的“白盒”方法,以发现原子质潜力的功能形式。这项贡献讨论了符号回归在材料科学(MS)中的作用,并对当前的方法论挑战和最新结果提供了全面的概述。提出了一种基于遗传编程的方法来建模原子能(由原子位置和相关势能的快照组成),并在从头算电子结构数据上进行了经验验证。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
本文重新访问了符号回归的数据集和评估标准,该任务是使用数学方程式表达给定数据的任务,特别关注其科学发现的潜力。专注于基于Feynman物理学讲座的现有数据集中使用的一组公式,我们重新创建了120个数据集,以讨论科学发现(SRSD)符号回归的性能。对于120个SRSD数据集中的每个数据集,我们仔细查看公式及其变量的属性,以设计合理逼真的值的值范围,以便可以使用我们的新SRSD数据集来评估SRSD的潜力,例如SR方法是否是SR方法con(re)从此类数据集中发现物理定律。作为评估度量,我们还建议在预测方程和地面方程树之间使用归一化的编辑距离。虽然现有指标是目标值和SR模型之间的二进制或误差,但标准化的编辑距离评估了地面真相和预测方程树之间的相似性。我们已经使用SRBENCH中的五种最先进的SR方法在新的SRSD数据集上进行了实验,并基于最新的变压器体系结构进行了简单的基线。结果表明,我们提供了更现实的性能评估,并为科学发现开辟了新的基于机器学习的方法。我们的数据集和代码存储库公开可用。
translated by 谷歌翻译
在科学的背景下,众所周知的格言“一张图片胜过千言万语”可能是“一个型号胜过一千个数据集”。在本手稿中,我们将Sciml软件生态系统介绍作为混合物理法律和科学模型的信息,并使用数据驱动的机器学习方法。我们描述了一个数学对象,我们表示通用微分方程(UDE),作为连接生态系统的统一框架。我们展示了各种各样的应用程序,从自动发现解决高维汉密尔顿 - Jacobi-Bellman方程的生物机制,可以通过UDE形式主义和工具进行措辞和有效地处理。我们展示了软件工具的一般性,以处理随机性,延迟和隐式约束。这使得各种SCIML应用程序变为核心训练机构的核心集,这些训练机构高度优化,稳定硬化方程,并与分布式并行性和GPU加速器兼容。
translated by 谷歌翻译
长期以来,科学家一直旨在发现有意义的公式,以准确描述实验数据。一种常见的方法是使用域知识手动创建自然现象的数学模型,然后将这些模型拟合到数据。相比之下,机器学习算法在消耗大量数据的同时可以自动化准确的数据驱动模型的构建。在文献中探讨了对学习模型的功能形式(例如,非负)的逻辑约束的问题。但是,寻找与一般背景知识一致的模型是一个开放的问题。我们开发了一种将逻辑推理与符号回归相结合的方法,从而实现了自然现象模型的原则推导。我们演示了这些概念,用于开普勒的第三个行星运动定律,爱因斯坦的相对论时间稀释定律以及兰穆尔的吸附理论,在每种情况下都会将实验数据与背景理论自动连接起来。我们表明,使用形式的逻辑推理将正确的公式与一组合理公式区分开时,可以从几个数据点发现法律,这些公式在数据上具有相似的错误。推理与机器学习的结合提供了对自然现象的关键方面的可概括见解。我们设想,这种组合将使能够发现基本科学定律,并认为我们的工作是自动化科学方法的关键第一步。
translated by 谷歌翻译
大多数机器学习方法都用作建模的黑匣子。我们可能会尝试从基于物理学的训练方法中提取一些知识,例如神经颂(普通微分方程)。神经ODE具有可能具有更高类的代表功能的优势,与黑盒机器学习模型相比,扩展的可解释性,描述趋势和局部行为的能力。这种优势对于具有复杂趋势的时间序列尤其重要。但是,已知的缺点是与自回归模型和长期术语内存(LSTM)网络相比,广泛用于数据驱动的时间序列建模的高训练时间。因此,我们应该能够平衡可解释性和训练时间,以在实践中应用神经颂歌。该论文表明,现代神经颂歌不能简化为时间序列建模应用程序的模型。将神经ODE的复杂性与传统的时间序列建模工具进行比较。唯一可以提取的解释是操作员的特征空间,这对于大型系统来说是一个不适的问题。可以使用不同的经典分析方法提取光谱,这些方法没有延长时间的缺点。因此,我们将神经ODE缩小为更简单的线性形式,并使用合并的神经网络和ODE系统方法对时间序列建模进行了新的视图。
translated by 谷歌翻译
神经普通微分方程模型的动态系统,\ textit {ode}由神经网络学习。但是,ODE从根本上是不足以建模具有长期依赖性或不连续性的系统,这些系统在工程和生物系统中很常见。已经提出了更广泛的微分方程(DE)类作为补救措施,包括延迟微分方程和整数差异方程。此外,当通过分段强迫函数对硬质量和odes进行建模时,神经颂歌会遭受数值的不稳定性。在这项工作中,我们提出了\ textit {neural laplace},这是一个学习不同类别的统一框架,包括上述所有类别。我们没有在时间域中对动态进行建模,而是在拉普拉斯域中对其进行建模,在拉普拉斯域中,可以将历史依赖性和时间的不连续性表示为复杂指数的求和。为了提高学习效率,我们使用Riemann Sphere的几何立体图来诱导Laplace域中的平滑度。在实验中,神经拉普拉斯在建模和推断DES类别的轨迹方面表现出卓越的性能,包括具有复杂历史依赖性和突然变化的DES类别。
translated by 谷歌翻译
加固学习算法可以解决动态决策和最优控制问题。通过连续值的状态和输入变量,强化学习算法必须依赖函数近似器来表示值函数和策略映射。常用的数值近似器,如神经网络或基础函数扩展,具有两个主要缺点:它们是黑匣子型号,可以对学习的映射有很小的洞察力,并且他们需要广泛的试验和错误调整它们的超参数。在本文中,我们通过使用符号回归提出了一种以分析表达式的形式构建平滑值函数的新方法。我们介绍了三种离线方法,用于基于状态转换模型查找值函数:符号值迭代,符号策略迭代,以及Bellman方程的直接解决方案。该方法在四个非线性控制问题上说明:速度控制摩擦力控制,单键和双连杆摆动,和磁操作。结果表明,该价值函数产生良好的策略,并紧凑,数学上易行,易于插入其他算法。这使得它们可能适用于进一步分析闭环系统。使用神经网络的替代方法的比较表明,我们的方法优于基于神经网络的方法。
translated by 谷歌翻译
在这里,我们提出了符合性整合的符号回归(SISR),这是一种从数据中学习物理控制方程的新技术。SISR使用具有突变的多层LSTM-RNN采用深层符号回归方法,以概率地采样哈密顿符号表达式。使用符号神经网络,我们开发了一种模型无关的方法,用于从数据中提取有意义的物理先验,这些方法可以直接施加到RNN输出中,从而限制了其搜索空间。使用四阶符号整合方案对RNN产生的汉密尔顿人进行了优化和评估;预测性能用于训练LSTM-RNN,以通过寻求风险的政策梯度方法来产生越来越更好的功能。采用这些技术,我们从振荡器,摆,两体和三体重力系统中提取正确的管理方程,并具有嘈杂且非常小的数据集。
translated by 谷歌翻译
大多数低编码平台的用户,例如Excel和PowerApps,都以特定于域的公式语言编写程序来执行非平凡的任务。用户通常可以编写他们想要的大部分程序,但是引入了一些小错误,这些错误会产生破损的公式。这些错误既可以是句法和语义,也很难让低代码用户识别和修复,即使只能通过一些编辑解决。我们正式化了产生最后一英里维修问题等编辑的问题。为了解决这个问题,我们开发了Lamirage,这是一种最后一英里的维修发动机发电机,结合了符号和神经技术,以低代码公式语言进行最后一英里维修。 Lamirage采用语法和一组特定领域的约束/规则,它们共同近似目标语言,并使用它们来生成可以用该语言修复公式的维修引擎。为了应对本地化错误和对候选维修进行排名的挑战,Lamirage利用神经技术,而它依赖于符号方法来生成候选维修。这种组合使Lamirage可以找到满足提供的语法和约束的维修,然后选择最自然的修复。我们将Lamirage与400个Real Excel和PowerFX公式的最新神经和符号方法进行了比较,其中Lamirage的表现优于所有基线。我们释放这些基准,以鼓励在低代码域中进行后续工作。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译