The success of Deep Learning applications critically depends on the quality and scale of the underlying training data. Generative adversarial networks (GANs) can generate arbitrary large datasets, but diversity and fidelity are limited, which has recently been addressed by denoising diffusion probabilistic models (DDPMs) whose superiority has been demonstrated on natural images. In this study, we propose Medfusion, a conditional latent DDPM for medical images. We compare our DDPM-based model against GAN-based models, which constitute the current state-of-the-art in the medical domain. Medfusion was trained and compared with (i) StyleGan-3 on n=101,442 images from the AIROGS challenge dataset to generate fundoscopies with and without glaucoma, (ii) ProGAN on n=191,027 from the CheXpert dataset to generate radiographs with and without cardiomegaly and (iii) wGAN on n=19,557 images from the CRCMS dataset to generate histopathological images with and without microsatellite stability. In the AIROGS, CRMCS, and CheXpert datasets, Medfusion achieved lower (=better) FID than the GANs (11.63 versus 20.43, 30.03 versus 49.26, and 17.28 versus 84.31). Also, fidelity (precision) and diversity (recall) were higher (=better) for Medfusion in all three datasets. Our study shows that DDPM are a superior alternative to GANs for image synthesis in the medical domain.
translated by 谷歌翻译
病理学家对患病组织的视觉微观研究一直是一个多世纪以来癌症诊断和预后的基石。最近,深度学习方法在组织图像的分析和分类方面取得了重大进步。但是,关于此类模型在生成组织病理学图像的实用性方面的工作有限。这些合成图像在病理学中有多种应用,包括教育,熟练程度测试,隐私和数据共享的公用事业。最近,引入了扩散概率模型以生成高质量的图像。在这里,我们首次研究了此类模型的潜在用途以及优先的形态加权和颜色归一化,以合成脑癌的高质量组织病理学图像。我们的详细结果表明,与生成对抗网络相比,扩散概率模型能够合成各种组织病理学图像,并且具有较高的性能。
translated by 谷歌翻译
深度神经网络在医学图像分析中带来了显着突破。但是,由于其渴望数据的性质,医学成像项目中适度的数据集大小可能会阻碍其全部潜力。生成合成数据提供了一种有希望的替代方案,可以补充培训数据集并进行更大范围的医学图像研究。最近,扩散模型通过产生逼真的合成图像引起了计算机视觉社区的注意。在这项研究中,我们使用潜在扩散模型探索从高分辨率3D脑图像中生成合成图像。我们使用来自英国生物银行数据集的T1W MRI图像(n = 31,740)来训练我们的模型,以了解脑图像的概率分布,该脑图像以协变量为基础,例如年龄,性别和大脑结构量。我们发现我们的模型创建了现实的数据,并且可以使用条件变量有效地控制数据生成。除此之外,我们创建了一个带有100,000次脑图像的合成数据集,并使科学界公开使用。
translated by 谷歌翻译
Recent advances in computer vision have shown promising results in image generation. Diffusion probabilistic models in particular have generated realistic images from textual input, as demonstrated by DALL-E 2, Imagen and Stable Diffusion. However, their use in medicine, where image data typically comprises three-dimensional volumes, has not been systematically evaluated. Synthetic images may play a crucial role in privacy preserving artificial intelligence and can also be used to augment small datasets. Here we show that diffusion probabilistic models can synthesize high quality medical imaging data, which we show for Magnetic Resonance Images (MRI) and Computed Tomography (CT) images. We provide quantitative measurements of their performance through a reader study with two medical experts who rated the quality of the synthesized images in three categories: Realistic image appearance, anatomical correctness and consistency between slices. Furthermore, we demonstrate that synthetic images can be used in a self-supervised pre-training and improve the performance of breast segmentation models when data is scarce (dice score 0.91 vs. 0.95 without vs. with synthetic data).
translated by 谷歌翻译
生成对抗网络(GAN)具有许多潜在的医学成像应用,包括数据扩展,域适应和模型解释。由于图形处理单元(GPU)的记忆力有限,因此在低分辨率的医学图像上对当前的3D GAN模型进行了训练,因此这些模型要么无法扩展到高分辨率,要么容易出现斑驳的人工制品。在这项工作中,我们提出了一种新颖的端到端GAN体系结构,可以生成高分辨率3D图像。我们通过使用训练和推理之间的不同配置来实现这一目标。在训练过程中,我们采用了层次结构,该结构同时生成图像的低分辨率版本和高分辨率图像的随机选择子量。层次设计具有两个优点:首先,对高分辨率图像训练的记忆需求在子量之间摊销。此外,将高分辨率子体积固定在单个低分辨率图像上可确保子量化之间的解剖一致性。在推断期间,我们的模型可以直接生成完整的高分辨率图像。我们还将具有类似层次结构的编码器纳入模型中,以从图像中提取特征。 3D胸CT和脑MRI的实验表明,我们的方法在图像生成中的表现优于最新技术。我们还证明了所提出的模型在数据增强和临床相关特征提取中的临床应用。
translated by 谷歌翻译
随着脑成像技术和机器学习工具的出现,很多努力都致力于构建计算模型来捕获人脑中的视觉信息的编码。最具挑战性的大脑解码任务之一是通过功能磁共振成像(FMRI)测量的脑活动的感知自然图像的精确重建。在这项工作中,我们调查了来自FMRI的自然图像重建的最新学习方法。我们在架构设计,基准数据集和评估指标方面检查这些方法,并在标准化评估指标上呈现公平的性能评估。最后,我们讨论了现有研究的优势和局限,并提出了潜在的未来方向。
translated by 谷歌翻译
The availability of large-scale chest X-ray datasets is a requirement for developing well-performing deep learning-based algorithms in thoracic abnormality detection and classification. However, biometric identifiers in chest radiographs hinder the public sharing of such data for research purposes due to the risk of patient re-identification. To counteract this issue, synthetic data generation offers a solution for anonymizing medical images. This work employs a latent diffusion model to synthesize an anonymous chest X-ray dataset of high-quality class-conditional images. We propose a privacy-enhancing sampling strategy to ensure the non-transference of biometric information during the image generation process. The quality of the generated images and the feasibility of serving as exclusive training data are evaluated on a thoracic abnormality classification task. Compared to a real classifier, we achieve competitive results with a performance gap of only 3.5% in the area under the receiver operating characteristic curve.
translated by 谷歌翻译
基于深度学习的计算机辅助诊断(CAD)已成为医疗行业的重要诊断技术,有效提高诊断精度。然而,脑肿瘤磁共振(MR)图像数据集的稀缺性导致深度学习算法的低性能。传统数据增强(DA)生成的转换图像的分布本质上类似于原始的图像,从而在泛化能力方面产生有限的性能。这项工作提高了具有结构相似性损失功能(PGGAN-SSIM)的GAN的逐步生长,以解决图像模糊问题和模型崩溃。我们还探讨了其他基于GAN的数据增强,以证明所提出的模型的有效性。我们的结果表明,PGGAN-SSIM成功地生成了256x256的现实脑肿瘤MR图像,填充了原始数据集未发现的真实图像分布。此外,PGGAN-SSSIM超过了其他基于GAN的方法,实现了FRECHET成立距离(FID)和多尺度结构相似性(MS-SSIM)的有希望的性能提升。
translated by 谷歌翻译
Generative models have been very successful over the years and have received significant attention for synthetic data generation. As deep learning models are getting more and more complex, they require large amounts of data to perform accurately. In medical image analysis, such generative models play a crucial role as the available data is limited due to challenges related to data privacy, lack of data diversity, or uneven data distributions. In this paper, we present a method to generate brain tumor MRI images using generative adversarial networks. We have utilized StyleGAN2 with ADA methodology to generate high-quality brain MRI with tumors while using a significantly smaller amount of training data when compared to the existing approaches. We use three pre-trained models for transfer learning. Results demonstrate that the proposed method can learn the distributions of brain tumors. Furthermore, the model can generate high-quality synthetic brain MRI with a tumor that can limit the small sample size issues. The approach can addresses the limited data availability by generating realistic-looking brain MRI with tumors. The code is available at: ~\url{https://github.com/rizwanqureshi123/Brain-Tumor-Synthetic-Data}.
translated by 谷歌翻译
数据已成为当今世界上最有价值的资源。随着数据驱动算法的大量扩散,例如基于深度学习的方法,数据的可用性引起了极大的兴趣。在这种情况下,特别需要高质量的培训,验证和测试数据集。体积数据是医学中非常重要的资源,因为它范围从疾病诊断到治疗监测。如果数据集足够,则可以培训模型来帮助医生完成这些任务。不幸的是,在某些情况和应用程序中,大量数据不可用。例如,在医疗领域,罕见疾病和隐私问题可能导致数据可用性受到限制。在非医学领域,获得足够数量的高质量数据的高成本也可能引起人们的关注。解决这些问题的方法可能是生成合成数据,以结合其他更传统的数据增强方法来执行数据增强。因此,关于3D生成对抗网络(GAN)的大多数出版物都在医疗领域内。生成现实合成数据的机制的存在是克服这一挑战的好资产,尤其是在医疗保健中,因为数据必须具有良好的质量并且接近现实,即现实,并且没有隐私问题。在这篇综述中,我们提供了使用GAN生成现实的3D合成数据的作品的摘要。因此,我们概述了具有共同体系结构,优势和缺点的这些领域中基于GAN的方法。我们提出了一种新颖的分类学,评估,挑战和研究机会,以提供医学和其他领域甘恩当前状态的整体概述。
translated by 谷歌翻译
扩散概率模型(DPMS)在竞争对手GANS的图像生成中取得了显着的质量。但与GAN不同,DPMS使用一组缺乏语义含义的一组潜在变量,并且不能作为其他任务的有用表示。本文探讨了使用DPMS进行表示学习的可能性,并寻求通过自动编码提取输入图像的有意义和可解码的表示。我们的主要思想是使用可学习的编码器来发现高级语义,以及DPM作为用于建模剩余随机变化的解码器。我们的方法可以将任何图像编码为两部分潜在的代码,其中第一部分是语义有意义和线性的,第二部分捕获随机细节,允许接近精确的重建。这种功能使当前箔基于GaN的方法的挑战性应用,例如实际图像上的属性操作。我们还表明,这两级编码可提高去噪效率,自然地涉及各种下游任务,包括几次射击条件采样。
translated by 谷歌翻译
In biomedical image analysis, the applicability of deep learning methods is directly impacted by the quantity of image data available. This is due to deep learning models requiring large image datasets to provide high-level performance. Generative Adversarial Networks (GANs) have been widely utilized to address data limitations through the generation of synthetic biomedical images. GANs consist of two models. The generator, a model that learns how to produce synthetic images based on the feedback it receives. The discriminator, a model that classifies an image as synthetic or real and provides feedback to the generator. Throughout the training process, a GAN can experience several technical challenges that impede the generation of suitable synthetic imagery. First, the mode collapse problem whereby the generator either produces an identical image or produces a uniform image from distinct input features. Second, the non-convergence problem whereby the gradient descent optimizer fails to reach a Nash equilibrium. Thirdly, the vanishing gradient problem whereby unstable training behavior occurs due to the discriminator achieving optimal classification performance resulting in no meaningful feedback being provided to the generator. These problems result in the production of synthetic imagery that is blurry, unrealistic, and less diverse. To date, there has been no survey article outlining the impact of these technical challenges in the context of the biomedical imagery domain. This work presents a review and taxonomy based on solutions to the training problems of GANs in the biomedical imaging domain. This survey highlights important challenges and outlines future research directions about the training of GANs in the domain of biomedical imagery.
translated by 谷歌翻译
We show that diffusion models can achieve image sample quality superior to the current state-of-the-art generative models. We achieve this on unconditional image synthesis by finding a better architecture through a series of ablations. For conditional image synthesis, we further improve sample quality with classifier guidance: a simple, compute-efficient method for trading off diversity for fidelity using gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128×128, 4.59 on ImageNet 256×256, and 7.72 on ImageNet 512×512, and we match BigGAN-deep even with as few as 25 forward passes per sample, all while maintaining better coverage of the distribution. Finally, we find that classifier guidance combines well with upsampling diffusion models, further improving FID to 3.94 on ImageNet 256×256 and 3.85 on ImageNet 512×512. We release our code at https://github.com/openai/guided-diffusion.
translated by 谷歌翻译
We explore the use of Vector Quantized Variational AutoEncoder (VQ-VAE) models for large scale image generation. To this end, we scale and enhance the autoregressive priors used in VQ-VAE to generate synthetic samples of much higher coherence and fidelity than possible before. We use simple feed-forward encoder and decoder networks, making our model an attractive candidate for applications where the encoding and/or decoding speed is critical. Additionally, VQ-VAE requires sampling an autoregressive model only in the compressed latent space, which is an order of magnitude faster than sampling in the pixel space, especially for large images. We demonstrate that a multi-scale hierarchical organization of VQ-VAE, augmented with powerful priors over the latent codes, is able to generate samples with quality that rivals that of state of the art Generative Adversarial Networks on multifaceted datasets such as ImageNet, while not suffering from GAN's known shortcomings such as mode collapse and lack of diversity.
translated by 谷歌翻译
类别不平衡发生在许多实际应用程序中,包括图像分类,其中每个类中的图像数量显着不同。通过不平衡数据,生成的对抗网络(GANS)倾向于多数类样本。最近的两个方法,平衡GaN(Bagan)和改进的Bagan(Bagan-GP)被提出为增强工具来处理此问题并将余额恢复到数据。前者以无人监督的方式预先训练自动化器权重。但是,当来自不同类别的图像具有类似的特征时,它是不稳定的。后者通过促进监督的自动化培训培训,基于蒲甘进行改善,但预先培训偏向于多数阶级。在这项工作中,我们提出了一种新颖的条件变形式自动化器,具有用于生成的对抗性网络(CAPAN)的平衡训练,作为生成现实合成图像的增强工具。特别是,我们利用条件卷积改变自动化器,为GaN初始化和梯度惩罚培训提供了监督和平衡的预培训。我们所提出的方法在高度不平衡版本的MNIST,时尚 - MNIST,CIFAR-10和两个医学成像数据集中呈现出卓越的性能。我们的方法可以在FR \'回路截止距离,结构相似性指数测量和感知质量方面综合高质量的少数民族样本。
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译
扩散模型(DMS)显示出高质量图像合成的巨大潜力。但是,当涉及到具有复杂场景的图像时,如何正确描述图像全局结构和对象细节仍然是一项具有挑战性的任务。在本文中,我们提出了弗里多(Frido),这是一种特征金字塔扩散模型,该模型执行了图像合成的多尺度粗到1个降解过程。我们的模型将输入图像分解为依赖比例的矢量量化特征,然后是用于产生图像输出的粗到细门。在上述多尺度表示阶段,可以进一步利用文本,场景图或图像布局等其他输入条件。因此,还可以将弗里多应用于条件或跨模式图像合成。我们对各种无条件和有条件的图像生成任务进行了广泛的实验,从文本到图像综合,布局到图像,场景环形图像到标签形象。更具体地说,我们在五个基准测试中获得了最先进的FID分数,即可可和开阔图像的布局到图像,可可和视觉基因组的场景环形图像以及可可的标签对图像图像。 。代码可在https://github.com/davidhalladay/frido上找到。
translated by 谷歌翻译
通过将图像形成过程分解成逐个申请的去噪自身额,扩散模型(DMS)实现了最先进的合成导致图像数据和超越。另外,它们的配方允许引导机构来控制图像生成过程而不会再刷新。然而,由于这些模型通常在像素空间中直接操作,因此强大的DMS的优化通常消耗数百个GPU天,并且由于顺序评估,推理是昂贵的。为了在保留其质量和灵活性的同时启用有限计算资源的DM培训,我们将它们应用于强大的佩带自动化器的潜在空间。与以前的工作相比,这种代表上的培训扩散模型允许第一次达到复杂性降低和细节保存之间的近乎最佳点,极大地提高了视觉保真度。通过将跨关注层引入模型架构中,我们将扩散模型转化为强大而柔性的发电机,以进行诸如文本或边界盒和高分辨率合成的通用调节输入,以卷积方式变得可以实现。我们的潜在扩散模型(LDMS)实现了一种新的技术状态,可在各种任务中进行图像修复和高竞争性能,包括无条件图像生成,语义场景合成和超级分辨率,同时与基于像素的DMS相比显着降低计算要求。代码可在https://github.com/compvis/lattent-diffusion获得。
translated by 谷歌翻译
Tumor segmentation in histopathology images is often complicated by its composition of different histological subtypes and class imbalance. Oversampling subtypes with low prevalence features is not a satisfactory solution since it eventually leads to overfitting. We propose to create synthetic images with semantically-conditioned deep generative networks and to combine subtype-balanced synthetic images with the original dataset to achieve better segmentation performance. We show the suitability of Generative Adversarial Networks (GANs) and especially diffusion models to create realistic images based on subtype-conditioning for the use case of HER2-stained histopathology. Additionally, we show the capability of diffusion models to conditionally inpaint HER2 tumor areas with modified subtypes. Combining the original dataset with the same amount of diffusion-generated images increased the tumor Dice score from 0.833 to 0.854 and almost halved the variance between the HER2 subtype recalls. These results create the basis for more reliable automatic HER2 analysis with lower performance variance between individual HER2 subtypes.
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译