反事实是一种新兴的模型解释类型,最近引起了行业和学术界的大量关注。与传统的基于特征的解释(例如,归因)不同,反事实是一系列假设样本,可以将模型决策翻转而对查询的扰动最小。鉴于有效的反事实,人类能够在``假设的情况''的情况下进行推理,以便更好地理解模型决策边界。但是,释放反事实可能是有害的,因为它可能无意间泄漏敏感信息给对手,这给模型安全性和数据隐私带来了更高的风险。为了弥合差距,在本文中,我们提出了一个新颖的框架,以生成不同的私人反事实(DPC),而无需触摸已部署的模型或解释集,在该集合中注入了噪音以进行保护,同时保持反事实的解释作用。特别是,我们使用功能机制训练自动编码器来构建嘈杂的类原型,然后根据差异隐私的后处理免疫从潜在原型中得出DPC。进一步的评估证明了拟议框架的有效性,表明DPC可以成功缓解提取和推理攻击的风险。
translated by 谷歌翻译
As predictive models are increasingly being employed to make consequential decisions, there is a growing emphasis on developing techniques that can provide algorithmic recourse to affected individuals. While such recourses can be immensely beneficial to affected individuals, potential adversaries could also exploit these recourses to compromise privacy. In this work, we make the first attempt at investigating if and how an adversary can leverage recourses to infer private information about the underlying model's training data. To this end, we propose a series of novel membership inference attacks which leverage algorithmic recourse. More specifically, we extend the prior literature on membership inference attacks to the recourse setting by leveraging the distances between data instances and their corresponding counterfactuals output by state-of-the-art recourse methods. Extensive experimentation with real world and synthetic datasets demonstrates significant privacy leakage through recourses. Our work establishes unintended privacy leakage as an important risk in the widespread adoption of recourse methods.
translated by 谷歌翻译
隐私敏感数据的培训机器学习模型已成为一种流行的练习,在不断扩大的田野中推动创新。这已经向新攻击打开了门,这可能会产生严重的隐私含义。一个这样的攻击,会员推导攻击(MIA),暴露了特定数据点是否用于训练模型。一种越来越多的文献使用差异的私人(DP)训练算法作为反对这种攻击的辩护。但是,这些作品根据限制假设评估防御,即所有培训集以及非成员的所有成员都是独立的并相同分布的。这种假设没有在文献中的许多真实用例中占据。由此激励,我们评估隶属于样本之间的统计依赖性,并解释为什么DP不提供有意义的保护(在这种更常规的情况下,培训集尺寸$ N $的隐私参数$ \ epsilon $ scales)。我们使用从现实世界数据构建的培训集进行了一系列实证评估,其中包括示出样品之间的不同类型依赖性的培训集。我们的结果表明,培训集依赖关系可能会严重增加MIS的性能,因此假设数据样本在统计上独立,可以显着低估均撒的性能。
translated by 谷歌翻译
梯度泄漏攻击被认为是深度学习中的邪恶隐私威胁之一,因为攻击者在迭代培训期间隐蔽了梯度更新,而不会影响模型培训质量,但又使用泄漏的梯度逐步重建敏感培训数据,具有高攻击成功率。虽然具有差异隐私的深度学习是发布具有差异隐私保障的深度学习模型的违法标准,但我们展示了具有固定隐私参数的差异私有算法易受梯度泄漏攻击的影响。本文调查了差异隐私(DP)的梯度泄漏弹性深度学习的替代方法。首先,我们分析了差异隐私的深度学习的现有实现,它使用固定噪声方差使用固定隐私参数将恒定噪声对所有层中的梯度注入恒定噪声。尽管提供了DP保证,但该方法遭受了低精度,并且很容易受到梯度泄漏攻击。其次,通过使用动态隐私参数,我们提出了一种梯度泄漏弹性深度学习方法,差异隐私保证。与导致恒定噪声方差导致的固定参数策略不同,不同的动态参数策略存在替代技术,以引入自适应噪声方差和自适应噪声注入,其与差别私有模型训练期间的梯度更新的趋势紧密对齐。最后,我们描述了四个互补指标来评估和比较替代方法。
translated by 谷歌翻译
深度神经网络(DNNS)铰接对大型数据集的可用性的最新成功;但是,对此类数据集的培训经常为敏感培训信息构成隐私风险。在本文中,我们的目标是探讨生成模型和梯度稀疏性的力量,并提出了一种可扩展的隐私保留生成模型数据标准。与标准展示隐私保留框架相比,允许教师对一维预测进行投票,在高维梯度向量上投票在隐私保存方面具有挑战性。随着需要尺寸减少技术,我们需要在(1)之间的改进之间导航精致的权衡空间,并进行SGD收敛的放缓。为了解决这一点,我们利用通信高效学习,并通过将顶-K压缩与相应的噪声注入机构相结合,提出一种新的噪声压缩和聚集方法TopAGG。理论上,我们证明了DataLens框架保证了其生成数据的差异隐私,并提供了其收敛性的分析。为了展示DataLens的实际使用情况,我们对不同数据集进行广泛的实验,包括Mnist,Fashion-Mnist和高维Celeba,并且我们表明,DataLens显着优于其他基线DP生成模型。此外,我们改进了所提出的Topagg方法,该方法是DP SGD培训的主要构建块之一,并表明它能够在大多数情况下实现比最先进的DP SGD方法更高的效用案件。我们的代码在HTTPS://github.com/ai-secure/datalens公开提供。
translated by 谷歌翻译
Differential privacy is a strong notion for privacy that can be used to prove formal guarantees, in terms of a privacy budget, , about how much information is leaked by a mechanism. However, implementations of privacy-preserving machine learning often select large values of in order to get acceptable utility of the model, with little understanding of the impact of such choices on meaningful privacy. Moreover, in scenarios where iterative learning procedures are used, differential privacy variants that offer tighter analyses are used which appear to reduce the needed privacy budget but present poorly understood trade-offs between privacy and utility. In this paper, we quantify the impact of these choices on privacy in experiments with logistic regression and neural network models. Our main finding is that there is a huge gap between the upper bounds on privacy loss that can be guaranteed, even with advanced mechanisms, and the effective privacy loss that can be measured using current inference attacks. Current mechanisms for differentially private machine learning rarely offer acceptable utility-privacy trade-offs with guarantees for complex learning tasks: settings that provide limited accuracy loss provide meaningless privacy guarantees, and settings that provide strong privacy guarantees result in useless models.
translated by 谷歌翻译
机器学习(ML)模型已广泛应用于各种应用,包括图像分类,文本生成,音频识别和图形数据分析。然而,最近的研究表明,ML模型容易受到隶属推导攻击(MIS),其目的是推断数据记录是否用于训练目标模型。 ML模型上的MIA可以直接导致隐私违规行为。例如,通过确定已经用于训练与某种疾病相关的模型的临床记录,攻击者可以推断临床记录的所有者具有很大的机会。近年来,MIS已被证明对各种ML模型有效,例如,分类模型和生成模型。同时,已经提出了许多防御方法来减轻米西亚。虽然ML模型上的MIAS形成了一个新的新兴和快速增长的研究区,但还没有对这一主题进行系统的调查。在本文中,我们对会员推论和防御进行了第一个全面调查。我们根据其特征提供攻击和防御的分类管理,并讨论其优点和缺点。根据本次调查中确定的限制和差距,我们指出了几个未来的未来研究方向,以激发希望遵循该地区的研究人员。这项调查不仅是研究社区的参考,而且还为该研究领域之外的研究人员带来了清晰的照片。为了进一步促进研究人员,我们创建了一个在线资源存储库,并与未来的相关作品继续更新。感兴趣的读者可以在https://github.com/hongshenghu/membership-inference-machine-learning-literature找到存储库。
translated by 谷歌翻译
从公共机器学习(ML)模型中泄漏数据是一个越来越重要的领域,因为ML的商业和政府应用可以利用多个数据源,可能包括用户和客户的敏感数据。我们对几个方面的当代进步进行了全面的调查,涵盖了非自愿数据泄漏,这对ML模型很自然,潜在的恶毒泄漏是由隐私攻击引起的,以及目前可用的防御机制。我们专注于推理时间泄漏,这是公开可用模型的最可能场景。我们首先在不同的数据,任务和模型体系结构的背景下讨论什么是泄漏。然后,我们提出了跨非自愿和恶意泄漏的分类法,可用的防御措施,然后进行当前可用的评估指标和应用。我们以杰出的挑战和开放性的问题结束,概述了一些有希望的未来研究方向。
translated by 谷歌翻译
差异隐私(DP)已被出现为严格的形式主义,以推理可量化的隐私泄漏。在机器学习(ML)中,已采用DP限制推理/披露训练示例。在现有的工作中杠杆横跨ML管道,尽管隔离,通常专注于梯度扰动等机制。在本文中,我们展示了DP-util,DP整体实用分析框架,跨越ML管道,重点是输入扰动,客观扰动,梯度扰动,输出扰动和预测扰动。在隐私敏感数据上给出ML任务,DP-Util使ML隐私从业者能够对DP在这五个扰动点中的影响,以模型公用事业丢失,隐私泄漏和真正透露的数量来测量DP的影响。训练样本。我们在视觉,医疗和金融数据集上使用两个代表性学习算法(Logistic回归和深神经网络)来评估DP-Uts,以防止会员资格推论攻击作为案例研究攻击。我们结果的一个亮点是,预测扰动一致地在所有数据集中始终如一地实现所有模型的最低实用损耗。在Logistic回归模型中,与其他扰动技术相比,客观扰动导致最低的隐私泄漏。对于深度神经网络,梯度扰动导致最低的隐私泄漏。此外,我们的结果揭示了记录的结果表明,由于隐私泄漏增加,差异私有模型揭示了更多数量的成员样本。总体而言,我们的研究结果表明,为了使使用的扰动机制有明智的决定,ML隐私从业者需要检查优化技术(凸与非凸),扰动机制,课程数量和隐私预算之间的动态。
translated by 谷歌翻译
Differentially Private Stochastic Gradient Descent (DP-SGD) is a key method for applying privacy in the training of deep learning models. This applies isotropic Gaussian noise to gradients during training, which can perturb these gradients in any direction, damaging utility. Metric DP, however, can provide alternative mechanisms based on arbitrary metrics that might be more suitable. In this paper we apply \textit{directional privacy}, via a mechanism based on the von Mises-Fisher (VMF) distribution, to perturb gradients in terms of \textit{angular distance} so that gradient direction is broadly preserved. We show that this provides $\epsilon d$-privacy for deep learning training, rather than the $(\epsilon, \delta)$-privacy of the Gaussian mechanism; and that experimentally, on key datasets, the VMF mechanism can outperform the Gaussian in the utility-privacy trade-off.
translated by 谷歌翻译
对协作学习的实证攻击表明,深度神经网络的梯度不仅可以披露训练数据的私有潜在属性,还可以用于重建原始数据。虽然先前的作品试图量化了梯度的隐私风险,但这些措施没有建立理论上对梯度泄漏的理解了解,而不是跨越攻击者的概括,并且不能完全解释通过实际攻击在实践中通过实证攻击观察到的内容。在本文中,我们介绍了理论上激励的措施,以量化攻击依赖和攻击无关方式的信息泄漏。具体而言,我们展示了$ \ mathcal {v} $ - 信息的适应,它概括了经验攻击成功率,并允许量化可以从任何所选择的攻击模型系列泄漏的信息量。然后,我们提出了独立的措施,只需要共享梯度,用于量化原始和潜在信息泄漏。我们的经验结果,六个数据集和四种流行型号,揭示了第一层的梯度包含最高量的原始信息,而(卷积)特征提取器层之后的(完全连接的)分类层包含最高的潜在信息。此外,我们展示了如何在训练期间诸如梯度聚集的技术如何减轻信息泄漏。我们的工作为更好的防御方式铺平了道路,例如基于层的保护或强聚合。
translated by 谷歌翻译
Recent development in the field of explainable artificial intelligence (XAI) has helped improve trust in Machine-Learning-as-a-Service (MLaaS) systems, in which an explanation is provided together with the model prediction in response to each query. However, XAI also opens a door for adversaries to gain insights into the black-box models in MLaaS, thereby making the models more vulnerable to several attacks. For example, feature-based explanations (e.g., SHAP) could expose the top important features that a black-box model focuses on. Such disclosure has been exploited to craft effective backdoor triggers against malware classifiers. To address this trade-off, we introduce a new concept of achieving local differential privacy (LDP) in the explanations, and from that we establish a defense, called XRand, against such attacks. We show that our mechanism restricts the information that the adversary can learn about the top important features, while maintaining the faithfulness of the explanations.
translated by 谷歌翻译
鉴于对机器学习模型的访问,可以进行对手重建模型的培训数据?这项工作从一个强大的知情对手的镜头研究了这个问题,他们知道除了一个之外的所有培训数据点。通过实例化混凝土攻击,我们表明重建此严格威胁模型中的剩余数据点是可行的。对于凸模型(例如Logistic回归),重建攻击很简单,可以以封闭形式导出。对于更常规的模型(例如神经网络),我们提出了一种基于训练的攻击策略,该攻击策略接收作为输入攻击的模型的权重,并产生目标数据点。我们展示了我们对MNIST和CIFAR-10训练的图像分类器的攻击的有效性,并系统地研究了标准机器学习管道的哪些因素影响重建成功。最后,我们从理论上调查了有多差异的隐私足以通过知情对手减轻重建攻击。我们的工作提供了有效的重建攻击,模型开发人员可以用于评估超出以前作品中考虑的一般设置中的个别点的记忆(例如,生成语言模型或访问培训梯度);它表明,标准模型具有存储足够信息的能力,以实现培训数据点的高保真重建;它表明,差异隐私可以成功减轻该参数制度中的攻击,其中公用事业劣化最小。
translated by 谷歌翻译
近年来,已经提出了各种解释方法,以帮助用户深入了解神经网络返回的结果,神经网络是复杂而不透明的黑盒子。但是,解释产生了潜在的侧道渠道,这可以由对对手进行安装攻击的对手所利用。特别是,事后解释方法根据输入维度根据其重要性或与结果相关性突出显示,也泄露了削弱安全性和隐私性的信息。在这项工作中,我们对各种流行的解释技术产生的隐私风险和安全风险进行了第一个系统表征。首先,我们提出了新颖的解释引导的黑盒逃避攻击,导致查询计数的10倍以相同的成功率。我们表明,可以将解释的对抗优势量化为估计梯度的总方差的降低。其次,我们重新审视通过常见解释泄漏的成员资格信息。与先前研究的观察相反,通过我们的修改攻击,我们显示了会员信息的显着泄漏(即使在更严格的黑盒子设置中,比先前的结果比先前的结果提高了100%)。最后,我们研究了解释引导的模型提取攻击,并通过大量降低查询计数来证明对抗性的增长。
translated by 谷歌翻译
窃取对受控信息的攻击,以及越来越多的信息泄漏事件,已成为近年来新兴网络安全威胁。由于蓬勃发展和部署先进的分析解决方案,新颖的窃取攻击利用机器学习(ML)算法来实现高成功率并导致大量损坏。检测和捍卫这种攻击是挑战性和紧迫的,因此政府,组织和个人应该非常重视基于ML的窃取攻击。本调查显示了这种新型攻击和相应对策的最新进展。以三类目标受控信息的视角审查了基于ML的窃取攻击,包括受控用户活动,受控ML模型相关信息和受控认证信息。最近的出版物总结了概括了总体攻击方法,并导出了基于ML的窃取攻击的限制和未来方向。此外,提出了从三个方面制定有效保护的对策 - 检测,破坏和隔离。
translated by 谷歌翻译
对机器学习模型的会员推理攻击(MIA)可能会导致模型培训中使用的培训数据集的严重隐私风险。在本文中,我们提出了一种针对成员推理攻击(MIAS)的新颖有效的神经元引导的防御方法。我们确定了针对MIA的现有防御机制的关键弱点,在该机制中,他们不能同时防御两个常用的基于神经网络的MIA,表明应分别评估这两次攻击以确保防御效果。我们提出了Neuguard,这是一种新的防御方法,可以通过对象共同控制输出和内部神经元的激活,以指导训练集的模型输出和测试集的模型输出以具有近距离分布。 Neuguard由类别的差异最小化靶向限制最终输出神经元和层平衡输出控制的目标,旨在限制每一层中的内部神经元。我们评估Neuguard,并将其与最新的防御能力与两个基于神经网络的MIA,五个最强的基于度量的MIA,包括三个基准数据集中的新提出的仅标签MIA。结果表明,Neuguard通过提供大大改善的公用事业权衡权衡,一般性和间接费用来优于最先进的防御能力。
translated by 谷歌翻译
机器学习与服务(MLAAS)已成为广泛的范式,即使是通过例如,也是客户可用的最复杂的机器学习模型。一个按要求的原则。这使用户避免了数据收集,超参数调整和模型培训的耗时过程。但是,通过让客户访问(预测)模型,MLAAS提供商危害其知识产权,例如敏感培训数据,优化的超参数或学到的模型参数。对手可以仅使用预测标签创建模型的副本,并以(几乎)相同的行为。尽管已经描述了这种攻击的许多变体,但仅提出了零星的防御策略,以解决孤立的威胁。这增加了对模型窃取领域进行彻底系统化的必要性,以全面了解这些攻击是成功的原因,以及如何全面地捍卫它们。我们通过对模型窃取攻击,评估其性能以及探索不同设置中相应的防御技术来解决这一问题。我们为攻击和防御方法提出了分类法,并提供有关如何根据目标和可用资源选择正确的攻击或防御策略的准则。最后,我们分析了当前攻击策略使哪些防御能力降低。
translated by 谷歌翻译
机器学习模型在许多领域都表现出了有希望的表现。但是,担心他们可能会偏向特定的群体,阻碍了他们在高级申请中的采用。因此,必须确保机器学习模型中的公平性。以前的大多数努力都需要访问敏感属性以减轻偏见。尽管如此,由于人们对隐私和法律依从性的认识日益增加,获得具有敏感属性的大规模数据通常是不可行的。因此,一个重要的研究问题是如何在隐私下做出公平的预测?在本文中,我们研究了半私人环境中公平分类的新问题,其中大多数敏感属性都是私有的,只有少量的干净敏感属性可用。为此,我们提出了一个新颖的框架Fairsp,可以首先学会通过利用有限的清洁敏感属性来纠正隐私保证下的嘈杂敏感属性。然后,它以对抗性方式共同建模校正和清洁数据以进行歧义和预测。理论分析表明,当大多数敏感属性都是私有的时,提出的模型可以确保公平。现实世界数据集的实验结果证明了所提出的模型在隐私下做出公平预测并保持高精度的有效性。
translated by 谷歌翻译
机器学习的最新进展使其在不同领域的广泛应用程序,最令人兴奋的应用程序之一是自动驾驶汽车(AV),这鼓励了从感知到预测到计划的许多ML算法的开发。但是,培训AV通常需要从不同驾驶环境(例如城市)以及不同类型的个人信息(例如工作时间和路线)收集的大量培训数据。这种收集的大数据被视为以数据为中心的AI时代的ML新油,通常包含大量对隐私敏感的信息,这些信息很难删除甚至审核。尽管现有的隐私保护方法已经取得了某些理论和经验成功,但将它们应用于自动驾驶汽车等现实世界应用时仍存在差距。例如,当培训AVS时,不仅可以单独识别的信息揭示对隐私敏感的信息,还可以揭示人口级别的信息,例如城市内的道路建设以及AVS的专有商业秘密。因此,重新审视AV中隐私风险和相应保护方法的前沿以弥合这一差距至关重要。遵循这一目标,在这项工作中,我们为AVS中的隐私风险和保护方法提供了新的分类法,并将AV中的隐私分为三个层面:个人,人口和专有。我们明确列出了保护每个级别的隐私级别,总结这些挑战的现有解决方案,讨论课程和结论,并为研究人员和从业者提供潜在的未来方向和机会。我们认为,这项工作将有助于塑造AV中的隐私研究,并指导隐私保护技术设计。
translated by 谷歌翻译
如今,深度学习模型的所有者和开发人员必须考虑其培训数据的严格隐私保护规则,通常是人群来源且保留敏感信息。如今,深入学习模型执行隐私保证的最广泛采用的方法依赖于实施差异隐私的优化技术。根据文献,这种方法已被证明是针对多种模型的隐私攻击的成功防御,但其缺点是对模型的性能的实质性降级。在这项工作中,我们比较了差异私有的随机梯度下降(DP-SGD)算法与使用正则化技术的标准优化实践的有效性。我们分析了生成模型的实用程序,培训性能以及成员推理和模型反转攻击对学习模型的有效性。最后,我们讨论了差异隐私的缺陷和限制,并从经验上证明了辍学和L2型规范的卓越保护特性。
translated by 谷歌翻译