普通射线照相被广泛用于检测总髋关节置换(THR)植入物的机械松动。目前,X光片是由医疗专业人员手动评估的,这可能是差的,并且观察者内部可靠性和准确性较低。此外,手动检测THR植入物的机械松动需要经验丰富的临床医生,这些临床医生可能总是很容易获得,可能导致诊断延迟。在这项研究中,我们提出了一种新型的,全自动和可解释的方法,用于使用深卷积神经网络(CNN)从纯X线照片中检测THR植入物的机械松动。我们使用五倍交叉验证对40名患者进行了40名患者的CNN培训,并将其性能与大量板认证的骨科医生(AFC)进行了比较。为了提高对机器结局的信心,我们还实施了显着图,以可视化CNN在哪里进行诊断。 CNN在诊断植入物的机械松动方面优于骨科医生,其敏感性明显高于敏感性(0.94),其特异性相同(0.96)(0.96)。显着图显示,CNN着眼于临床相关的特征以进行诊断。此类CNN可用于自动放射植入物的机械松动,以补充从业者的决策过程,提高其诊断准确性,并释放它们以进行以患者为中心的护理。
translated by 谷歌翻译
延迟的诊断联合性不稳定会导致踝关节的显着发病和关节炎的加速变化。使用3D体积测量值,重量计算机断层扫描(WBCT)已显示出有希望的早期和可靠检测分离出的集团不稳定性的潜力。尽管据报道这些测量值高度准确,但它们也依赖于经验,耗时,并且需要一种特定的3D测量软件工具,该工具导致临床医生仍然对传统的诊断方法表现出更大的兴趣。这项研究的目的是通过使用WBCT扫描来自动化3D体积解剖结构的3D体积评估来提高准确性,加速分析时间并减少观察者间偏置。我们使用了先前收集的单侧联合不稳定性患者的WBCT扫描进行了回顾性研究。评估了144个双侧踝WBCT扫描(48个不稳定,96个对照)。我们开发了三个深度学习(DL)模型,用于分析WBCT扫描以识别集团不稳定性。这三个模型包括两个最先进的模型(模型1-3D卷积神经网络[CNN]和具有长短期内存[LSTM]的模型2-CNN)和一个新的模型(模型3-差分差异我们在这项研究中介绍的CNN LSTM)。模型1未能分析WBCT扫描(F1得分= 0)。模型2仅错误分类两种情况(F1得分= 0.80)。模型3的表现优于模型2,并实现了几乎完美的性能,在对照组中仅误导了一个情况(F1得分= 0.91),因为不稳定,而比模型2更快。
translated by 谷歌翻译
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people, especially in developing and impoverished countries where high levels of pollution, unclean living conditions, and overcrowding are frequently observed, along with insufficient medical infrastructure. Pleural effusion, a condition in which fluids fill the lung and complicate breathing, is brought on by pneumonia. Early detection of pneumonia is essential for ensuring curative care and boosting survival rates. The approach most usually used to diagnose pneumonia is chest X-ray imaging. The purpose of this work is to develop a method for the automatic diagnosis of bacterial and viral pneumonia in digital x-ray pictures. This article first presents the authors' technique, and then gives a comprehensive report on recent developments in the field of reliable diagnosis of pneumonia. In this study, here tuned a state-of-the-art deep convolutional neural network to classify plant diseases based on images and tested its performance. Deep learning architecture is compared empirically. VGG19, ResNet with 152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNet with 201 layers are among the architectures tested. Experiment data consists of two groups, sick and healthy X-ray pictures. To take appropriate action against plant diseases as soon as possible, rapid disease identification models are preferred. DenseNet201 has shown no overfitting or performance degradation in our experiments, and its accuracy tends to increase as the number of epochs increases. Further, DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time. This architecture outperforms the competition in terms of testing accuracy, scoring 95%. Each architecture was trained using Keras, using Theano as the backend.
translated by 谷歌翻译
Deep learning (DL) analysis of Chest X-ray (CXR) and Computed tomography (CT) images has garnered a lot of attention in recent times due to the COVID-19 pandemic. Convolutional Neural Networks (CNNs) are well suited for the image analysis tasks when trained on humongous amounts of data. Applications developed for medical image analysis require high sensitivity and precision compared to any other fields. Most of the tools proposed for detection of COVID-19 claims to have high sensitivity and recalls but have failed to generalize and perform when tested on unseen datasets. This encouraged us to develop a CNN model, analyze and understand the performance of it by visualizing the predictions of the model using class activation maps generated using (Gradient-weighted Class Activation Mapping) Grad-CAM technique. This study provides a detailed discussion of the success and failure of the proposed model at an image level. Performance of the model is compared with state-of-the-art DL models and shown to be comparable. The data and code used are available at https://github.com/aleesuss/c19.
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
Computer tomography (CT) have been routinely used for the diagnosis of lung diseases and recently, during the pandemic, for detecting the infectivity and severity of COVID-19 disease. One of the major concerns in using ma-chine learning (ML) approaches for automatic processing of CT scan images in clinical setting is that these methods are trained on limited and biased sub-sets of publicly available COVID-19 data. This has raised concerns regarding the generalizability of these models on external datasets, not seen by the model during training. To address some of these issues, in this work CT scan images from confirmed COVID-19 data obtained from one of the largest public repositories, COVIDx CT 2A were used for training and internal vali-dation of machine learning models. For the external validation we generated Indian-COVID-19 CT dataset, an open-source repository containing 3D CT volumes and 12096 chest CT images from 288 COVID-19 patients from In-dia. Comparative performance evaluation of four state-of-the-art machine learning models, viz., a lightweight convolutional neural network (CNN), and three other CNN based deep learning (DL) models such as VGG-16, ResNet-50 and Inception-v3 in classifying CT images into three classes, viz., normal, non-covid pneumonia, and COVID-19 is carried out on these two datasets. Our analysis showed that the performance of all the models is comparable on the hold-out COVIDx CT 2A test set with 90% - 99% accuracies (96% for CNN), while on the external Indian-COVID-19 CT dataset a drop in the performance is observed for all the models (8% - 19%). The traditional ma-chine learning model, CNN performed the best on the external dataset (accu-racy 88%) in comparison to the deep learning models, indicating that a light-weight CNN is better generalizable on unseen data. The data and code are made available at https://github.com/aleesuss/c19.
translated by 谷歌翻译
最近的人工智能(AI)算法已在各种医学分类任务上实现了放射科医生级的性能。但是,只有少数研究涉及CXR扫描异常发现的定位,这对于向放射学家解释图像级分类至关重要。我们在本文中介绍了一个名为Vindr-CXR的可解释的深度学习系统,该系统可以将CXR扫描分类为多种胸部疾病,同时将大多数类型的关键发现本地化在图像上。 Vindr-CXR接受了51,485次CXR扫描的培训,并通过放射科医生提供的边界盒注释进行了培训。它表现出与经验丰富的放射科医生相当的表现,可以在3,000张CXR扫描的回顾性验证集上对6种常见的胸部疾病进行分类,而在接收器操作特征曲线(AUROC)下的平均面积为0.967(95%置信区间[CI]:0.958---------0.958------- 0.975)。 VINDR-CXR在独立患者队列中也得到了外部验证,并显示出其稳健性。对于具有14种类型病变的本地化任务,我们的自由响应接收器操作特征(FROC)分析表明,VINDR-CXR以每扫描确定的1.0假阳性病变的速率达到80.2%的敏感性。还进行了一项前瞻性研究,以衡量VINDR-CXR在协助六名经验丰富的放射科医生方面的临床影响。结果表明,当用作诊断工具时,提出的系统显着改善了放射科医生本身之间的一致性,平均Fleiss的Kappa的同意增加了1.5%。我们还观察到,在放射科医生咨询了Vindr-CXR的建议之后,在平均Cohen的Kappa中,它们和系统之间的一致性显着增加了3.3%。
translated by 谷歌翻译
前列腺癌是全球诊断出的最危险的癌症。前列腺诊断受到许多因素的影响,例如病变复杂性,观察者可见性和可变性。在过去的几十年中,许多基于磁共振成像(MRI)的技术已用于前列腺癌的鉴定和分类。开发这些技术至关重要,并且具有很大的医学效果,因为它们可以提高治疗益处和患者生存的机会。已经提出了一种取决于MRI的新技术来改善诊断。该技术包括两个阶段。首先,已经对MRI图像进行了预处理,以使医疗图像更适合于检测步骤。其次,已经基于预先训练的深度学习模型InceptionResnetv2进行了前列腺癌的识别,该模型具有许多优势并取得了有效的结果。在本文中,用于此目的的InceptionResnETV2深度学习模型的平均精度为89.20%,曲线下的面积(AUC)等于93.6%。与其他先前技术相比,该提出的新深度学习技术的实验结果代表了有希望的和有效的结果。
translated by 谷歌翻译
乳腺癌是全球女性死亡的主要原因之一。如果在高级阶段检测到很难治疗,但是,早期发现可以显着增加生存机会,并改善数百万妇女的生活。鉴于乳腺癌的普遍流行,研究界提出早期检测,分类和诊断的框架至关重要。与医生协调的人工智能研究社区正在开发此类框架以自动化检测任务。随着研究活动的激增,加上大型数据集的可用性和增强的计算能力,预计AI框架结果将有助于更多的临床医生做出正确的预测。在本文中,提出了使用乳房X线照片对乳腺癌进行分类的新框架。所提出的框架结合了从新颖的卷积神经网络(CNN)功能中提取的强大特征,以及手工制作的功能,包括猪(定向梯度的直方图)和LBP(本地二进制图案)。在CBIS-DDSM数据集上获得的结果超过了技术状态。
translated by 谷歌翻译
乳腺癌是女性可能发生的最严重的癌症之一。通过分析组织学图像(HIS)来自动诊断乳腺癌对患者及其预后很重要。他的分类为临床医生提供了对疾病的准确了解,并使他们可以更有效地治疗患者。深度学习(DL)方法已成功地用于各种领域,尤其是医学成像,因为它们有能力自动提取功能。这项研究旨在使用他的乳腺癌对不同类型的乳腺癌进行分类。在这项研究中,我们提出了一个增强的胶囊网络,该网络使用RES2NET块和四个额外的卷积层提取多尺度特征。此外,由于使用了小的卷积内核和RES2NET块,因此所提出的方法具有较少的参数。结果,新方法的表现优于旧方法,因为它会自动学习最佳功能。测试结果表明该模型的表现优于先前的DL方法。
translated by 谷歌翻译
心脏肿大确实是一种心脏肿大的医学疾病。如果早点被捕获,心脏肿大最好处理,因此早期发现至关重要。数十年来,胸部X射线是最常用的X射线照相检查之一,一直用于检测和可视化人体器官异常。 X射线也是心脏肿瘤的重要医学诊断工具。即使对于领域专家,将许多类型的疾病与X射线区分开是一项艰巨且耗时的任务。深度学习模型在大型数据集时也是最有效的,但是由于隐私问题,大型数据集在医疗行业内部很少可用。这项研究介绍了一种基于学习的基于学习的定制的u-NET模型,用于检测心脏肿瘤疾病。在训练阶段,使用了来自“ ChestX-Ray8”开源真实数据集的胸部X射线图像。为了减少计算时间,此模型在进行训练步骤之前,在进行数据预处理,图像改进,图像压缩和分类。这项工作使用胸部X射线图像数据集模拟并产生了94%的诊断准确性,灵敏度为96.2%,特异性为92.5%,这比先前培训的模型发现以识别心脏全肿瘤疾病。
translated by 谷歌翻译
计算机辅助诊断数字病理学正在变得普遍存在,因为它可以提供更有效和客观的医疗保健诊断。最近的进展表明,卷积神经网络(CNN)架构是一种完善的深度学习范式,可用于设计一种用于乳腺癌检测的计算机辅助诊断(CAD)系统。然而,探索了污染变异性因污染变异性和染色常规化的影响,尚未得到很好的挑战。此外,对于高吞吐量筛选可能是重要的网络模型的性能分析,这也不适用于高吞吐量筛查,也不熟悉。要解决这一挑战,我们考虑了一些当代CNN模型,用于涉及(1)的乳房组织病理学图像的二进制分类。使用基于自适应颜色解卷积(ACD)的颜色归一化算法来处理污染归一化图像的数据以处理染色变量; (2)应用基于转移学习的一些可动性更高效的CNN模型的培训,即视觉几何组网络(VGG16),MobileNet和效率网络。我们在公开的Brankhis数据集上验证了培训的CNN网络,适用于200倍和400x放大的组织病理学图像。实验分析表明,大多数情况下预染额网络在数据增强乳房组织病理学图像中产生更好的质量,而不是污染归一化的情况。此外,我们使用污染标准化图像评估了流行轻量级网络的性能和效率,并发现在测试精度和F1分数方面,高效网络优于VGG16和MOBILENET。我们观察到在测试时间方面的效率比其他网络更好; vgg net,mobilenet,在分类准确性下没有太大降低。
translated by 谷歌翻译
人工智能(AI)技术具有重要潜力,可以实现有效,鲁棒和自动的图像表型,包括识别细微图案。基于AI的检测搜索图像空间基于模式和特征来找到兴趣区域。存在一种良性的肿瘤组织学,可以通过使用图像特征的基于AI的分类方法来识别。图像从图像中提取可用于的可覆盖方式,可以通过显式(手工/工程化)和深度辐射谱系框架来探索途径。辐射瘤分析有可能用作非侵入性技术,以准确表征肿瘤,以改善诊断和治疗监测。这项工作介绍基于AI的技术,专注于肿瘤宠物和PET / CT成像,用于不同的检测,分类和预测/预测任务。我们还讨论了所需的努力,使AI技术转换为常规临床工作流程,以及潜在的改进和互补技术,例如在电子健康记录和神经象征性AI技术上使用自然语言处理。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
皮肤病学中浅表性感染的诊断仍然基于手动直接显微镜检查与氢氧化钾(KOH)溶液。然而,这种方法可能是耗时的,其诊断准确度率因临床医生的经验而广泛变化。随着临床显微镜领域的神经网络应用的增加,现在可以自动化此类手动过程,提高效率和准确性。本研究提出了一种深度神经网络结构,可以为这些问题提供快速解决方案,并且可以在没有染料的灰度图像中进行自动真菌检测。收集160个含有真菌元素的微观场照片,收集从甲癣患者获得的含有甲状腺菌的患者和含有从正常钉子获得的溶解角蛋白的微观田间照片。从这些图像中提取含有4234个真菌和4981个角蛋白的较小贴剂。为了检测真菌和角蛋白,开发了VGG16和Incepionv3模型。 VGG16型号的精度为95.98%,曲线(AUC)值下的面积为0.9930,而Inceptionv3模型的精度为95.90%,AUC值为0.9917。但是,临床医生的平均准确性和AUC值分别为72.8%和0.87。这种深度学习模型允许开发可以检测微观图像内的真菌的自动化系统。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)占据了计算机视野的领域,这要归功于它们提取功能及其在分类问题中出色的表现,例如在自动分析X射线中。不幸的是,这些神经网络被认为是黑盒算法,即不可能了解该算法如何实现最终结果。要将这些算法应用于不同领域并测试方法论的工作原理,我们需要使用可解释的AI技术。医学领域的大多数工作都集中在二进制或多类分类问题上。但是,在许多现实生活中,例如胸部X射线射线,可以同时出现不同疾病的放射学迹象。这引起了所谓的“多标签分类问题”。这些任务的缺点是类不平衡,即不同的标签没有相同数量的样本。本文的主要贡献是一种深度学习方法,用于不平衡的多标签胸部X射线数据集。它为当前未充分利用的Padchest数据集建立了基线,并基于热图建立了可解释的AI技术。该技术还包括概率和模型间匹配。我们系统的结果很有希望,尤其是考虑到使用的标签数量。此外,热图与预期区域相匹配,即它们标志着专家将用来做出决定的区域。
translated by 谷歌翻译
有必要开发负担得起且可靠的诊断工具,该工具允许包含COVID-19的扩散。已经提出了机器学习(ML)算法来设计支持决策系统以评估胸部X射线图像,事实证明,这些图像可用于检测和评估疾病进展。许多研究文章围绕此主题发表,这使得很难确定未来工作的最佳方法。本文介绍了使用胸部X射线图像应用于COVID-19检测的ML的系统综述,旨在就方法,体系结构,数据库和当前局限性为研究人员提供基线。
translated by 谷歌翻译
In this era of pandemic, the future of healthcare industry has never been more exciting. Artificial intelligence and machine learning (AI & ML) present opportunities to develop solutions that cater for very specific needs within the industry. Deep learning in healthcare had become incredibly powerful for supporting clinics and in transforming patient care in general. Deep learning is increasingly being applied for the detection of clinically important features in the images beyond what can be perceived by the naked human eye. Chest X-ray images are one of the most common clinical method for diagnosing a number of diseases such as pneumonia, lung cancer and many other abnormalities like lesions and fractures. Proper diagnosis of a disease from X-ray images is often challenging task for even expert radiologists and there is a growing need for computerized support systems due to the large amount of information encoded in X-Ray images. The goal of this paper is to develop a lightweight solution to detect 14 different chest conditions from an X ray image. Given an X-ray image as input, our classifier outputs a label vector indicating which of 14 disease classes does the image fall into. Along with the image features, we are also going to use non-image features available in the data such as X-ray view type, age, gender etc. The original study conducted Stanford ML Group is our base line. Original study focuses on predicting 5 diseases. Our aim is to improve upon previous work, expand prediction to 14 diseases and provide insight for future chest radiography research.
translated by 谷歌翻译
随着世界各地的COVID-19病毒感染的下降,Monkeypox病毒正在缓慢地出现。人们害怕它,认为它看起来像是Covid-19的大流行。因此,在广泛的社区传播之前,至关重要的是检测到它们。基于AI的检测可以帮助他们在早期识别它们。在本文中,我们首先比较了13个不同的预训练的深度学习(DL)模型,以检测蒙基氧基病毒。为此,我们首先将它们添加到所有这些层中,并使用四个完善的措施进行分析:精度,召回,F1得分和准确性。在确定了表现最佳的DL模型之后,我们将它们整合以利用从其获得的概率输出的多数投票来提高整体绩效。我们在公开可用的数据集上执行实验,这表明我们的集合方法提供了精度,召回,F1得分和精度为85.44 \%,85.47 \%,85.40 \%和87.13 \%。这些令人鼓舞的结果表明,所提出的方法适用于卫生从业人员进行大规模筛查。
translated by 谷歌翻译
To analyze this characteristic of vulnerability, we developed an automated deep learning method for detecting microvessels in intravascular optical coherence tomography (IVOCT) images. A total of 8,403 IVOCT image frames from 85 lesions and 37 normal segments were analyzed. Manual annotation was done using a dedicated software (OCTOPUS) previously developed by our group. Data augmentation in the polar (r,{\theta}) domain was applied to raw IVOCT images to ensure that microvessels appear at all possible angles. Pre-processing methods included guidewire/shadow detection, lumen segmentation, pixel shifting, and noise reduction. DeepLab v3+ was used to segment microvessel candidates. A bounding box on each candidate was classified as either microvessel or non-microvessel using a shallow convolutional neural network. For better classification, we used data augmentation (i.e., angle rotation) on bounding boxes with a microvessel during network training. Data augmentation and pre-processing steps improved microvessel segmentation performance significantly, yielding a method with Dice of 0.71+/-0.10 and pixel-wise sensitivity/specificity of 87.7+/-6.6%/99.8+/-0.1%. The network for classifying microvessels from candidates performed exceptionally well, with sensitivity of 99.5+/-0.3%, specificity of 98.8+/-1.0%, and accuracy of 99.1+/-0.5%. The classification step eliminated the majority of residual false positives, and the Dice coefficient increased from 0.71 to 0.73. In addition, our method produced 698 image frames with microvessels present, compared to 730 from manual analysis, representing a 4.4% difference. When compared to the manual method, the automated method improved microvessel continuity, implying improved segmentation performance. The method will be useful for research purposes as well as potential future treatment planning.
translated by 谷歌翻译