This paper as technology report is focusing on evaluation and performance about depth estimations based on lidar data and stereo images(front left and front right). The lidar 3d cloud data and stereo images are provided by ford. In addition, this paper also will explain some details about optimization for depth estimation performance. And some reasons why not use machine learning to do depth estimation, replaced by pure mathmatics to do stereo depth estimation. The structure of this paper is made of by following:(1) Performance: to discuss and evaluate about depth maps created from stereo images and 3D cloud points, and relationships analysis for alignment and errors;(2) Depth estimation by stereo images: to explain the methods about how to use stereo images to estimate depth;(3)Depth estimation by lidar: to explain the methods about how to use 3d cloud datas to estimate depth;In summary, this report is mainly to show the performance of depth maps and their approaches, analysis for them.
translated by 谷歌翻译
深度估计是某些领域的关键技术之一,例如自动驾驶和机器人导航。但是,使用单个传感器的传统方法不可避免地受到传感器的性能的限制。因此,提出了一种融合激光镜头和立体声摄像机的精度和健壮方法。该方法完全结合了LiDAR和立体声摄像机的优势,这些摄像头可以保留LIDAR高精度和图像的高分辨率的优势。与传统的立体声匹配方法相比,对象和照明条件的质地对算法的影响较小。首先,将LIDAR数据的深度转换为立体声摄像机的差异。由于LiDAR数据的密度在Y轴上相对稀疏,因此使用插值方法对转换的差异图进行了更采样。其次,为了充分利用精确的差异图,融合了差异图和立体声匹配以传播准确的差异。最后,将视差图转换为深度图。此外,转换后的差异图还可以提高算法的速度。我们在Kitti基准测试中评估了拟议的管道。该实验表明,我们的算法比几种经典方法具有更高的精度。
translated by 谷歌翻译
3D场景流动表征了当前时间的点如何流到3D欧几里得空间中的下一次,该空间具有自主推断场景中所有对象的非刚性运动的能力。从图像估算场景流的先前方法具有局限性,该方法通过分别估计光流和差异来划分3D场景流的整体性质。学习3D场景从点云流动也面临着综合数据和真实数据与LIDAR点云的稀疏性之间差距的困难。在本文中,利用生成的密集深度图来获得显式的3D坐标,该坐标可直接从2D图像中学习3D场景流。通过将2D像素的密度性质引入3D空间,可以改善预测场景流的稳定性。通过统计方法消除了生成的3D点云中的离群值,以削弱噪声点对3D场景流估计任务的影响。提出了差异一致性损失,以实现3D场景流的更有效的无监督学习。比较了现实世界图像上3D场景流的自我监督学习方法与在综合数据集中学习的多种方法和在LIDAR点云上学习的方法。显示多个场景流量指标的比较可以证明引入伪LIDAR点云到场景流量估计的有效性和优势。
translated by 谷歌翻译
3D object detection is an essential task in autonomous driving. Recent techniques excel with highly accurate detection rates, provided the 3D input data is obtained from precise but expensive LiDAR technology. Approaches based on cheaper monocular or stereo imagery data have, until now, resulted in drastically lower accuracies -a gap that is commonly attributed to poor image-based depth estimation. However, in this paper we argue that it is not the quality of the data but its representation that accounts for the majority of the difference. Taking the inner workings of convolutional neural networks into consideration, we propose to convert image-based depth maps to pseudo-LiDAR representations -essentially mimicking the LiDAR signal. With this representation we can apply different existing LiDAR-based detection algorithms. On the popular KITTI benchmark, our approach achieves impressive improvements over the existing state-of-the-art in image-based performance -raising the detection accuracy of objects within the 30m range from the previous state-of-the-art of 22% to an unprecedented 74%. At the time of submission our algorithm holds the highest entry on the KITTI 3D object detection leaderboard for stereo-image-based approaches. Our code is publicly available at https: //github.com/mileyan/pseudo_lidar.
translated by 谷歌翻译
对于单眼深度估计,获取真实数据的地面真相并不容易,因此通常使用监督的合成数据采用域适应方法。但是,由于缺乏实际数据的监督,这仍然可能会导致较大的域间隙。在本文中,我们通过从真实数据中生成可靠的伪基础真理来开发一个域适应框架,以提供直接的监督。具体而言,我们提出了两种用于伪标记的机制:1)通过测量图像具有相同内容但不同样式的深度预测的一致性,通过测量深度预测的一致性; 2)通过点云完成网络的3D感知伪标记,该网络学会完成3D空间中的深度值,从而在场景中提供更多的结构信息,以完善并生成更可靠的伪标签。在实验中,我们表明我们的伪标记方法改善了各种环境中的深度估计,包括在训练过程中使用立体声对。此外,该提出的方法对现实世界数据集中的几种最新无监督域的适应方法表现出色。
translated by 谷歌翻译
我们提出了一个新颖的高分辨率和具有挑战性的立体声数据集框架室内场景,并以致密而准确的地面真相差异注释。我们数据集的特殊是存在几个镜面和透明表面的存在,即最先进的立体声网络失败的主要原因。我们的采集管道利用了一个新颖的深度时空立体声框架,该框架可以轻松准确地使用子像素精度进行标记。我们总共发布了419个样本,这些样本在64个不同的场景中收集,并以致密的地面差异注释。每个样本包括高分辨率对(12 MPX)以及一个不平衡对(左:12 MPX,右:1.1 MPX)。此外,我们提供手动注释的材料分割面具和15K未标记的样品。我们根据我们的数据集评估了最新的深层网络,强调了它们在解决立体声方面的开放挑战方面的局限性,并绘制了未来研究的提示。
translated by 谷歌翻译
A significant weakness of most current deep Convolutional Neural Networks is the need to train them using vast amounts of manually labelled data. In this work we propose a unsupervised framework to learn a deep convolutional neural network for single view depth prediction, without requiring a pre-training stage or annotated ground-truth depths. We achieve this by training the network in a manner analogous to an autoencoder. At training time we consider a pair of images, source and target, with small, known camera motion between the two such as a stereo pair. We train the convolutional encoder for the task of predicting the depth map for the source image. To do so, we explicitly generate an inverse warp of the target image using the predicted depth and known inter-view displacement, to reconstruct the source image; the photometric error in the reconstruction is the reconstruction loss for the encoder. The acquisition of this training data is considerably simpler than for equivalent systems, requiring no manual annotation, nor calibration of depth sensor to camera. We show that our network trained on less than half of the KITTI dataset gives comparable performance to that of the state-of-the-art supervised methods for single view depth estimation. 1 1 Find the model and other imformation on the project github page: https://github. com/Ravi-Garg/Unsupervised_Depth_Estimation
translated by 谷歌翻译
场景流表示3D空间中点的运动,这是代表2D图像中像素运动的光流的对应物。但是,很难在真实场景中获得场景流的基础真理,并且最近的研究基于培训的合成数据。因此,如何基于实际数据训练场景流网络具有无监督的方法表现出至关重要的意义。本文提出了一种针对场景流的新颖无监督学习方法,该方法利用了单眼相机连续的两个帧的图像,而没有场景流的地面真相进行训练。我们的方法实现了一个目标,即训练场景流通过现实世界数据弥合了训练数据和测试数据之间的差距,并扩大了可用数据的范围以进行培训。本文无监督的场景流程学习主要由两个部分组成:(i)深度估计和摄像头姿势估计,以及(ii)基于四个不同损失功能的场景流估计。深度估计和相机姿势估计获得了两个连续帧之间的深度图和摄像头,这为下一个场景流估计提供了更多信息。之后,我们使用了深度一致性损失,动态静态一致性损失,倒角损失和拉普拉斯正规化损失来对场景流网络进行无监督的训练。据我们所知,这是第一篇意识到从单眼摄像机流动的3D场景流程的无监督学习的论文。 Kitti上的实验结果表明,与传统方法迭代最接近点(ICP)和快速全球注册(FGR)相比,我们无监督学习场景学习的方法符合表现出色。源代码可在以下网址获得:https://github.com/irmvlab/3dunmonoflow。
translated by 谷歌翻译
准确估计深度信息的能力对于许多自主应用来识别包围环境并预测重要对象的深度至关重要。最近使用的技术之一是单眼深度估计,其中深度图从单个图像推断出深度图。本文提高了自我监督的深度学习技术,以进行准确的广义单眼深度估计。主要思想是训练深层模型要考虑不同帧的序列,每个帧都是地理标记的位置信息。这使得模型能够增强给定区域语义的深度估计。我们展示了我们模型改善深度估计结果的有效性。该模型在现实环境中受过培训,结果显示在将位置数据添加到模型训练阶段之后的深度图中的改进。
translated by 谷歌翻译
Monocular Depth Estimation (MDE) is a fundamental problem in computer vision with numerous applications. Recently, LIDAR-supervised methods have achieved remarkable per-pixel depth accuracy in outdoor scenes. However, significant errors are typically found in the proximity of depth discontinuities, i.e., depth edges, which often hinder the performance of depth-dependent applications that are sensitive to such inaccuracies, e.g., novel view synthesis and augmented reality. Since direct supervision for the location of depth edges is typically unavailable in sparse LIDAR-based scenes, encouraging the MDE model to produce correct depth edges is not straightforward. In this work we propose to learn to detect the location of depth edges from densely-supervised synthetic data, and use it to generate supervision for the depth edges in the MDE training. %Despite the 'domain gap' between synthetic and real data, we show that depth edges that are estimated directly are significantly more accurate than the ones that emerge indirectly from the MDE training. To quantitatively evaluate our approach, and due to the lack of depth edges ground truth in LIDAR-based scenes, we manually annotated subsets of the KITTI and the DDAD datasets with depth edges ground truth. We demonstrate significant gains in the accuracy of the depth edges with comparable per-pixel depth accuracy on several challenging datasets.
translated by 谷歌翻译
在现有方法中,LIDAR的探测器显示出卓越的性能,但视觉探测器仍被广泛用于其价格优势。从惯例上讲,视觉检验的任务主要依赖于连续图像的输入。但是,探测器网络学习图像提供的异性几何信息非常复杂。在本文中,将伪LIDAR的概念引入了探测器中以解决此问题。伪LIDAR点云背面项目由图像生成的深度图中的3D点云,这改变了图像表示的方式。与立体声图像相比,立体声匹配网络生成的伪lidar点云可以得到显式的3D坐标。由于在3D空间中发生了6个自由度(DOF)姿势转换,因此伪宽点云提供的3D结构信息比图像更直接。与稀疏的激光雷达相比,伪驱动器具有较密集的点云。为了充分利用伪LIDAR提供的丰富点云信息,采用了投射感知的探测管道。以前的大多数基于激光雷达的算法从点云中采样了8192点,作为探视网络的输入。投影感知的密集探测管道采用从图像产生的所有伪lidar点云,除了误差点作为网络的输入。在图像中充分利用3D几何信息时,图像中的语义信息也用于探视任务中。 2D-3D的融合是在仅基于图像的进程中实现的。 Kitti数据集的实验证明了我们方法的有效性。据我们所知,这是使用伪LIDAR的第一种视觉探光法。
translated by 谷歌翻译
立体声匹配是计算机愿景中的一个重要任务,这些任务是几十年来引起了巨大的研究。虽然在差距准确度,密度和数据大小方面,公共立体声数据集难以满足模型的要求。在本文中,我们的目标是解决数据集和模型之间的问题,并提出了一个具有高精度差异地面真理的大规模立体声数据集,名为Plantstereo。我们使用了半自动方式来构造数据集:在相机校准和图像配准后,可以从深度图像获得高精度视差图像。总共有812个图像对覆盖着多种植物套装:菠菜,番茄,胡椒和南瓜。我们首先在四种不同立体声匹配方法中评估了我们的Plandstereo数据集。不同模型和植物的广泛实验表明,与整数精度的基础事实相比,Plantstereo提供的高精度差异图像可以显着提高深度学习模型的培训效果。本文提供了一种可行和可靠的方法来实现植物表面密集的重建。 PlantSereo数据集和相对代码可用于:https://www.github.com/wangqingyu985/plantstereo
translated by 谷歌翻译
深度估计是3D重建的具有挑战性的任务,以提高环境意识的准确性感测。这项工作带来了一系列改进的新解决方案,与现有方法相比,增加了一系列改进,这增加了对深度图的定量和定性理解。最近,卷积神经网络(CNN)展示了估计单眼图象的深度图的非凡能力。然而,传统的CNN不支持拓扑结构,它们只能在具有确定尺寸和重量的常规图像区域上工作。另一方面,图形卷积网络(GCN)可以处理非欧几里德数据的卷积,并且它可以应用于拓扑结构内的不规则图像区域。因此,在这项工作中为了保护对象几何外观和分布,我们的目的是利用GCN进行自我监督的深度估计模型。我们的模型包括两个并行自动编码器网络:第一个是一个自动编码器,它取决于Reset-50,并从输入图像和多尺度GCN上提取功能以估计深度图。反过来,第二网络将用于基于Reset-18的两个连续帧之间估计自我运动矢量(即3D姿势)。估计的3D姿势和深度图都将用于构建目标图像。使用与光度,投影和平滑度相关的损耗函数的组合用于应对不良深度预测,并保持对象的不连续性。特别是,我们的方法提供了可比性和有前途的结果,在公共基准和Make3D数据集中的高预测精度为89%,与最先进的解决方案相比,培训参数的数量减少了40%。源代码在https://github.com/arminmasoumian/gcndepth.git上公开可用
translated by 谷歌翻译
伪LIDAR表示的建议显着缩小了基于视觉的基于视觉激光痛的3D对象检测之间的差距。但是,当前的研究仅专注于通过利用复杂且耗时的神经网络来推动伪LIDAR的准确性提高。很少探索伪LIDAR代表的深刻特征来获得促进机会。在本文中,我们深入研究伪激光雷达表示,并认为3D对象检测的性能并不完全取决于高精度立体声深度估计。我们证明,即使对于不可靠的深度估计,通过适当的数据处理和精炼,它也可以达到可比的3D对象检测准确性。有了这一发现,我们进一步表明了使用伪大部分系统中快速但不准确的立体声匹配算法来实现低潜伏期响应的可能性。在实验中,我们开发了一个具有功能较低的立体声匹配预测指标的系统,并采用了提出的改进方案来提高准确性。对KITTI基准测试的评估表明,所提出的系统仅使用23毫秒的计算来实现最先进方法的竞争精度,这表明它是部署到真实CAR-HOLD应用程序的合适候选者。
translated by 谷歌翻译
深度估计是需要对环境的3D评估的广大应用程序的基石,例如机器人,增强现实和自主驱动来命名几个。深度估计的一个突出技术是立体声匹配,其具有多种优点:它被认为比其他深度传感技术更容易进入,可以实时产生密集的深度估计,并从近年来深度学习的进步中受益匪浅。然而,用于立体图像的深度估计的当前技术仍然遭受内置缺点。为了重建深度,立体声匹配算法首先在应用几何三角测量之前估计左图像和右图像之间的视差图。一个简单的分析表明,深度误差与对象距离相当成比例。因此,恒定的差异误差被转换为远离相机的物体的大深度误差。为了缓解这种二次关系,我们提出了一种简单但有效的方法,使用细化网络进行深度估计。我们展示了分析和经验结果表明所提出的学习程序减少了这种二次关系。我们评估了众所周知的基准和数据集的提出的细化程序,如演唱者和基提数据集,并在深度精度度量中展示了显着的改进。
translated by 谷歌翻译
深度立体声匹配近年来取得了重大进展。然而,最先进的方法基于昂贵的4D成本体积,这限制了它们在现实世界中的应用。要解决此问题,已经提出了3D相关映射和迭代差异更新。关于在现实世界平台中,如自动驾驶汽车和机器人,通常安装LIDAR。因此,我们进一步将稀疏的LIDAR点引入了迭代更新,这减轻了网络更新从零状态的差异的负担。此外,我们提出以自我监督的方式培训网络,以便可以在任何捕获的数据上培训,以获得更好的泛化能力。实验和比较表明,呈现的方法是有效的,并通过相关方法实现了可比的结果。
translated by 谷歌翻译
对于无人机和电池操作的自动驾驶系统,具有最低计算和能源成本的准确深度估计是至关重要的。机器人应用需要在快速变化的3D周围环境下进行导航和决策的实时深度估算。高精度算法可能会提供最佳的深度估计,但可能会消耗巨大的计算和能源资源。一般的权衡是选择较少准确的方法来进行初始深度估计,并在需要时选择更准确但更加密集的方法。先前的工作表明,可以通过开发最先进的方法(AnyNet)来改善立体声深度估计来改善这种权衡。我们研究了单眼和立体视觉深度估计方法,并研究了降低这些方法计算复杂性的方法。这是我们的基线。因此,我们的实验表明,单眼深度估计模型的大小降低了〜75%,将精度降低了不到2%(SSIM度量)。我们对新型立体声视觉方法(AnyNET)进行的实验表明,尽管模型大小降低了约20%,但深度估计的准确性不会降低3%以上(三个像素误差度量)。我们已经表明,较小的模型确实可以竞争性能。
translated by 谷歌翻译
In this paper, we present a novel method for integrating 3D LiDAR depth measurements into the existing ORB-SLAM3 by building upon the RGB-D mode. We propose and compare two methods of depth map generation: conventional computer vision methods, namely an inverse dilation operation, and a supervised deep learning-based approach. We integrate the former directly into the ORB-SLAM3 framework by adding a so-called RGB-L (LiDAR) mode that directly reads LiDAR point clouds. The proposed methods are evaluated on the KITTI Odometry dataset and compared to each other and the standard ORB-SLAM3 stereo method. We demonstrate that, depending on the environment, advantages in trajectory accuracy and robustness can be achieved. Furthermore, we demonstrate that the runtime of the ORB-SLAM3 algorithm can be reduced by more than 40 % compared to the stereo mode. The related code for the ORB-SLAM3 RGB-L mode will be available as open-source software under https://github.com/TUMFTM/ORB SLAM3 RGBL.
translated by 谷歌翻译
事件摄像机是生物启发传感器,可通过标准摄像机提供显着优势,例如低延迟,高延迟,高度的时间分辨率和高动态范围。我们提出了一种使用事件摄像机的新型结构化光系统来解决准确和高速深度感测的问题。我们的设置包括一个事件摄像机和一个激光点投影仪,在16毫秒期间,在光栅扫描模式中均匀地照亮场景。以前的方法匹配相互独立的事件,因此它们在信号延迟和抖动的存在下以高扫描速度提供噪声深度估计。相比之下,我们优化了旨在利用事件相关性的能量函数,称为时空稠度。所得到的方法对事件抖动鲁棒,因此以更高的扫描速度执行更好。实验表明,我们的方法可以根据事件摄像机处理高速运动和优于最先进的3D重建方法,对于相同的采集时间,平均地将RMSE降低了83%。
translated by 谷歌翻译
Per-pixel ground-truth depth data is challenging to acquire at scale. To overcome this limitation, self-supervised learning has emerged as a promising alternative for training models to perform monocular depth estimation. In this paper, we propose a set of improvements, which together result in both quantitatively and qualitatively improved depth maps compared to competing self-supervised methods.Research on self-supervised monocular training usually explores increasingly complex architectures, loss functions, and image formation models, all of which have recently helped to close the gap with fully-supervised methods. We show that a surprisingly simple model, and associated design choices, lead to superior predictions. In particular, we propose (i) a minimum reprojection loss, designed to robustly handle occlusions, (ii) a full-resolution multi-scale sampling method that reduces visual artifacts, and (iii) an auto-masking loss to ignore training pixels that violate camera motion assumptions. We demonstrate the effectiveness of each component in isolation, and show high quality, state-of-the-art results on the KITTI benchmark.
translated by 谷歌翻译