A significant weakness of most current deep Convolutional Neural Networks is the need to train them using vast amounts of manually labelled data. In this work we propose a unsupervised framework to learn a deep convolutional neural network for single view depth prediction, without requiring a pre-training stage or annotated ground-truth depths. We achieve this by training the network in a manner analogous to an autoencoder. At training time we consider a pair of images, source and target, with small, known camera motion between the two such as a stereo pair. We train the convolutional encoder for the task of predicting the depth map for the source image. To do so, we explicitly generate an inverse warp of the target image using the predicted depth and known inter-view displacement, to reconstruct the source image; the photometric error in the reconstruction is the reconstruction loss for the encoder. The acquisition of this training data is considerably simpler than for equivalent systems, requiring no manual annotation, nor calibration of depth sensor to camera. We show that our network trained on less than half of the KITTI dataset gives comparable performance to that of the state-of-the-art supervised methods for single view depth estimation. 1 1 Find the model and other imformation on the project github page: https://github. com/Ravi-Garg/Unsupervised_Depth_Estimation
translated by 谷歌翻译
Learning based methods have shown very promising results for the task of depth estimation in single images. However, most existing approaches treat depth prediction as a supervised regression problem and as a result, require vast quantities of corresponding ground truth depth data for training. Just recording quality depth data in a range of environments is a challenging problem. In this paper, we innovate beyond existing approaches, replacing the use of explicit depth data during training with easier-to-obtain binocular stereo footage.We propose a novel training objective that enables our convolutional neural network to learn to perform single image depth estimation, despite the absence of ground truth depth data. Exploiting epipolar geometry constraints, we generate disparity images by training our network with an image reconstruction loss. We show that solving for image reconstruction alone results in poor quality depth images. To overcome this problem, we propose a novel training loss that enforces consistency between the disparities produced relative to both the left and right images, leading to improved performance and robustness compared to existing approaches. Our method produces state of the art results for monocular depth estimation on the KITTI driving dataset, even outperforming supervised methods that have been trained with ground truth depth.
translated by 谷歌翻译
This paper addresses the problem of estimating the depth map of a scene given a single RGB image. We propose a fully convolutional architecture, encompassing residual learning, to model the ambiguous mapping between monocular images and depth maps. In order to improve the output resolution, we present a novel way to efficiently learn feature map up-sampling within the network. For optimization, we introduce the reverse Huber loss that is particularly suited for the task at hand and driven by the value distributions commonly present in depth maps. Our model is composed of a single architecture that is trained end-to-end and does not rely on post-processing techniques, such as CRFs or other additional refinement steps. As a result, it runs in real-time on images or videos. In the evaluation, we show that the proposed model contains fewer parameters and requires fewer training data than the current state of the art, while outperforming all approaches on depth estimation. Code and models are publicly available 5 .
translated by 谷歌翻译
作为许多自主驾驶和机器人活动的基本组成部分,如自我运动估计,障碍避免和场景理解,单眼深度估计(MDE)引起了计算机视觉和机器人社区的极大关注。在过去的几十年中,已经开发了大量方法。然而,据我们所知,对MDE没有全面调查。本文旨在通过审查1970年至2021年之间发布的197个相关条款来弥补这一差距。特别是,我们为涵盖各种方法的MDE提供了全面的调查,介绍了流行的绩效评估指标并汇总公开的数据集。我们还总结了一些代表方法的可用开源实现,并比较了他们的表演。此外,我们在一些重要的机器人任务中审查了MDE的应用。最后,我们通过展示一些有希望的未来研究方向来结束本文。预计本调查有助于读者浏览该研究领域。
translated by 谷歌翻译
Per-pixel ground-truth depth data is challenging to acquire at scale. To overcome this limitation, self-supervised learning has emerged as a promising alternative for training models to perform monocular depth estimation. In this paper, we propose a set of improvements, which together result in both quantitatively and qualitatively improved depth maps compared to competing self-supervised methods.Research on self-supervised monocular training usually explores increasingly complex architectures, loss functions, and image formation models, all of which have recently helped to close the gap with fully-supervised methods. We show that a surprisingly simple model, and associated design choices, lead to superior predictions. In particular, we propose (i) a minimum reprojection loss, designed to robustly handle occlusions, (ii) a full-resolution multi-scale sampling method that reduces visual artifacts, and (iii) an auto-masking loss to ignore training pixels that violate camera motion assumptions. We demonstrate the effectiveness of each component in isolation, and show high quality, state-of-the-art results on the KITTI benchmark.
translated by 谷歌翻译
Predicting depth is an essential component in understanding the 3D geometry of a scene. While for stereo images local correspondence suffices for estimation, finding depth relations from a single image is less straightforward, requiring integration of both global and local information from various cues. Moreover, the task is inherently ambiguous, with a large source of uncertainty coming from the overall scale. In this paper, we present a new method that addresses this task by employing two deep network stacks: one that makes a coarse global prediction based on the entire image, and another that refines this prediction locally. We also apply a scale-invariant error to help measure depth relations rather than scale. By leveraging the raw datasets as large sources of training data, our method achieves state-of-the-art results on both NYU Depth and KITTI, and matches detailed depth boundaries without the need for superpixelation.
translated by 谷歌翻译
We present an unsupervised learning framework for the task of monocular depth and camera motion estimation from unstructured video sequences. In common with recent work [10,14,16], we use an end-to-end learning approach with view synthesis as the supervisory signal. In contrast to the previous work, our method is completely unsupervised, requiring only monocular video sequences for training. Our method uses single-view depth and multiview pose networks, with a loss based on warping nearby views to the target using the computed depth and pose. The networks are thus coupled by the loss during training, but can be applied independently at test time. Empirical evaluation on the KITTI dataset demonstrates the effectiveness of our approach: 1) monocular depth performs comparably with supervised methods that use either ground-truth pose or depth for training, and 2) pose estimation performs favorably compared to established SLAM systems under comparable input settings.
translated by 谷歌翻译
这些年来,展示技术已经发展。开发实用的HDR捕获,处理和显示解决方案以将3D技术提升到一个新的水平至关重要。多曝光立体声图像序列的深度估计是开发成本效益3D HDR视频内容的重要任务。在本文中,我们开发了一种新颖的深度体系结构,以进行多曝光立体声深度估计。拟议的建筑有两个新颖的组成部分。首先,对传统立体声深度估计中使用的立体声匹配技术进行了修改。对于我们体系结构的立体深度估计部分,部署了单一到stereo转移学习方法。拟议的配方规避了成本量构造的要求,该要求由基于重新编码的单码编码器CNN取代,具有不同的重量以进行功能融合。基于有效网络的块用于学习差异。其次,我们使用强大的视差特征融合方法组合了从不同暴露水平上从立体声图像获得的差异图。使用针对不同质量度量计算的重量图合并在不同暴露下获得的差异图。获得的最终预测差异图更强大,并保留保留深度不连续性的最佳功能。提出的CNN具有使用标准动态范围立体声数据或具有多曝光低动态范围立体序列的训练的灵活性。在性能方面,所提出的模型超过了最新的单眼和立体声深度估计方法,无论是定量还是质量地,在具有挑战性的场景流以及暴露的Middlebury立体声数据集上。该体系结构在复杂的自然场景中表现出色,证明了其对不同3D HDR应用的有用性。
translated by 谷歌翻译
本文提出了一个开放而全面的框架,以系统地评估对自我监督单眼估计的最新贡献。这包括训练,骨干,建筑设计选择和损失功能。该领域的许多论文在建筑设计或损失配方中宣称新颖性。但是,简单地更新历史系统的骨干会导致25%的相对改善,从而使其胜过大多数现有系统。对该领域论文的系统评估并不直接。在以前的论文中比较类似于类似的需要,这意味着评估协议中的长期错误在现场无处不在。许多论文可能不仅针对特定数据集进行了优化,而且还针对数据和评估标准的错误。为了帮助该领域的未来研究,我们发布了模块化代码库,可以轻松评估针对校正的数据和评估标准的替代设计决策。我们重新实施,验证和重新评估16个最先进的贡献,并引入一个新的数据集(SYNS-Patches),其中包含各种自然和城市场景中的密集室外深度地图。这允许计算复杂区域(例如深度边界)的信息指标。
translated by 谷歌翻译
现代计算机视觉已超越了互联网照片集的领域,并进入了物理世界,通过非结构化的环境引导配备摄像头的机器人和自动驾驶汽车。为了使这些体现的代理与现实世界对象相互作用,相机越来越多地用作深度传感器,重建了各种下游推理任务的环境。机器学习辅助的深度感知或深度估计会预测图像中每个像素的距离。尽管已经在深入估算中取得了令人印象深刻的进步,但仍然存在重大挑战:(1)地面真相深度标签很难大规模收集,(2)通常认为相机信息是已知的,但通常是不可靠的,并且(3)限制性摄像机假设很常见,即使在实践中使用了各种各样的相机类型和镜头。在本论文中,我们专注于放松这些假设,并描述将相机变成真正通用深度传感器的最终目标的贡献。
translated by 谷歌翻译
In this article, we tackle the problem of depth estimation from single monocular images. Compared with depth estimation using multiple images such as stereo depth perception, depth from monocular images is much more challenging. Prior work typically focuses on exploiting geometric priors or additional sources of information, most using hand-crafted features. Recently, there is mounting evidence that features from deep convolutional neural networks (CNN) set new records for various vision applications. On the other hand, considering the continuous characteristic of the depth values, depth estimation can be naturally formulated as a continuous conditional random field (CRF) learning problem. Therefore, here we present a deep convolutional neural field model for estimating depths from single monocular images, aiming to jointly explore the capacity of deep CNN and continuous CRF. In particular, we propose a deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework. We then further propose an equally effective model based on fully convolutional networks and a novel superpixel pooling method, which is about 10 times faster, to speedup the patch-wise convolutions in the deep model. With this more efficient model, we are able to design deeper networks to pursue better performance. Our proposed method can be used for depth estimation of general scenes with no geometric priors nor any extra information injected. In our case, the integral of the partition function can be calculated in a closed form such that we can exactly solve the log-likelihood maximization. Moreover, solving the inference problem for predicting depths of a test image is highly efficient as closed-form solutions exist. Experiments on both indoor and outdoor scene datasets demonstrate that the proposed method outperforms state-of-the-art depth estimation approaches.
translated by 谷歌翻译
Although cameras are ubiquitous, robotic platforms typically rely on active sensors like LiDAR for direct 3D perception. In this work, we propose a novel self-supervised monocular depth estimation method combining geometry with a new deep network, PackNet, learned only from unlabeled monocular videos. Our architecture leverages novel symmetrical packing and unpacking blocks to jointly learn to compress and decompress detail-preserving representations using 3D convolutions. Although self-supervised, our method outperforms other self, semi, and fully supervised methods on the KITTI benchmark. The 3D inductive bias in PackNet enables it to scale with input resolution and number of parameters without overfitting, generalizing better on out-of-domain data such as the NuScenes dataset. Furthermore, it does not require large-scale supervised pretraining on ImageNet and can run in real-time. Finally, we release DDAD (Dense Depth for Automated Driving), a new urban driving dataset with more challenging and accurate depth evaluation, thanks to longer-range and denser ground-truth depth generated from high-density LiDARs mounted on a fleet of self-driving cars operating world-wide. †
translated by 谷歌翻译
建立新型观点综合的最近进展后,我们提出了改善单眼深度估计的应用。特别是,我们提出了一种在三个主要步骤中分开的新颖训练方法。首先,单眼深度网络的预测结果被扭转到额外的视点。其次,我们应用一个额外的图像综合网络,其纠正并提高了翘曲的RGB图像的质量。通过最小化像素-WISE RGB重建误差,该网络的输出需要尽可能类似地查看地面真实性视图。第三,我们将相同的单眼深度估计重新应用于合成的第二视图点,并确保深度预测与相关的地面真理深度一致。实验结果证明,我们的方法在Kitti和Nyu-Deaft-V2数据集上实现了最先进的或可比性,具有轻量级和简单的香草U-Net架构。
translated by 谷歌翻译
Recent work has shown that optical flow estimation can be formulated as a supervised learning task and can be successfully solved with convolutional networks. Training of the so-called FlowNet was enabled by a large synthetically generated dataset. The present paper extends the concept of optical flow estimation via convolutional networks to disparity and scene flow estimation. To this end, we propose three synthetic stereo video datasets with sufficient realism, variation, and size to successfully train large networks. Our datasets are the first large-scale datasets to enable training and evaluating scene flow methods. Besides the datasets, we present a convolutional network for real-time disparity estimation that provides state-of-the-art results. By combining a flow and disparity estimation network and training it jointly, we demonstrate the first scene flow estimation with a convolutional network.
translated by 谷歌翻译
Convolutional neural networks (CNNs) have recently been very successful in a variety of computer vision tasks, especially on those linked to recognition. Optical flow estimation has not been among the tasks where CNNs were successful. In this paper we construct appropriate CNNs which are capable of solving the optical flow estimation problem as a supervised learning task. We propose and compare two architectures: a generic architecture and another one including a layer that correlates feature vectors at different image locations.Since existing ground truth datasets are not sufficiently large to train a CNN, we generate a synthetic Flying Chairs dataset. We show that networks trained on this unrealistic data still generalize very well to existing datasets such as Sintel and KITTI, achieving competitive accuracy at frame rates of 5 to 10 fps.
translated by 谷歌翻译
Recent work has shown that depth estimation from a stereo pair of images can be formulated as a supervised learning task to be resolved with convolutional neural networks (CNNs). However, current architectures rely on patch-based Siamese networks, lacking the means to exploit context information for finding correspondence in illposed regions. To tackle this problem, we propose PSM-Net, a pyramid stereo matching network consisting of two main modules: spatial pyramid pooling and 3D CNN. The spatial pyramid pooling module takes advantage of the capacity of global context information by aggregating context in different scales and locations to form a cost volume. The 3D CNN learns to regularize cost volume using stacked multiple hourglass networks in conjunction with intermediate supervision. The proposed approach was evaluated on several benchmark datasets. Our method ranked first in the KITTI 2012 and 2015 leaderboards before March 18, 2018. The codes of PSMNet are available at: https: //github.com/JiaRenChang/PSMNet.
translated by 谷歌翻译
Photometric differences are widely used as supervision signals to train neural networks for estimating depth and camera pose from unlabeled monocular videos. However, this approach is detrimental for model optimization because occlusions and moving objects in a scene violate the underlying static scenario assumption. In addition, pixels in textureless regions or less discriminative pixels hinder model training. To solve these problems, in this paper, we deal with moving objects and occlusions utilizing the difference of the flow fields and depth structure generated by affine transformation and view synthesis, respectively. Secondly, we mitigate the effect of textureless regions on model optimization by measuring differences between features with more semantic and contextual information without adding networks. In addition, although the bidirectionality component is used in each sub-objective function, a pair of images are reasoned about only once, which helps reduce overhead. Extensive experiments and visual analysis demonstrate the effectiveness of the proposed method, which outperform existing state-of-the-art self-supervised methods under the same conditions and without introducing additional auxiliary information.
translated by 谷歌翻译
Monocular depth estimation is a challenging problem on which deep neural networks have demonstrated great potential. However, depth maps predicted by existing deep models usually lack fine-grained details due to the convolution operations and the down-samplings in networks. We find that increasing input resolution is helpful to preserve more local details while the estimation at low resolution is more accurate globally. Therefore, we propose a novel depth map fusion module to combine the advantages of estimations with multi-resolution inputs. Instead of merging the low- and high-resolution estimations equally, we adopt the core idea of Poisson fusion, trying to implant the gradient domain of high-resolution depth into the low-resolution depth. While classic Poisson fusion requires a fusion mask as supervision, we propose a self-supervised framework based on guided image filtering. We demonstrate that this gradient-based composition performs much better at noisy immunity, compared with the state-of-the-art depth map fusion method. Our lightweight depth fusion is one-shot and runs in real-time, making our method 80X faster than a state-of-the-art depth fusion method. Quantitative evaluations demonstrate that the proposed method can be integrated into many fully convolutional monocular depth estimation backbones with a significant performance boost, leading to state-of-the-art results of detail enhancement on depth maps.
translated by 谷歌翻译
我们提出了一个新颖的高分辨率和具有挑战性的立体声数据集框架室内场景,并以致密而准确的地面真相差异注释。我们数据集的特殊是存在几个镜面和透明表面的存在,即最先进的立体声网络失败的主要原因。我们的采集管道利用了一个新颖的深度时空立体声框架,该框架可以轻松准确地使用子像素精度进行标记。我们总共发布了419个样本,这些样本在64个不同的场景中收集,并以致密的地面差异注释。每个样本包括高分辨率对(12 MPX)以及一个不平衡对(左:12 MPX,右:1.1 MPX)。此外,我们提供手动注释的材料分割面具和15K未标记的样品。我们根据我们的数据集评估了最新的深层网络,强调了它们在解决立体声方面的开放挑战方面的局限性,并绘制了未来研究的提示。
translated by 谷歌翻译
深度估计是3D重建的具有挑战性的任务,以提高环境意识的准确性感测。这项工作带来了一系列改进的新解决方案,与现有方法相比,增加了一系列改进,这增加了对深度图的定量和定性理解。最近,卷积神经网络(CNN)展示了估计单眼图象的深度图的非凡能力。然而,传统的CNN不支持拓扑结构,它们只能在具有确定尺寸和重量的常规图像区域上工作。另一方面,图形卷积网络(GCN)可以处理非欧几里德数据的卷积,并且它可以应用于拓扑结构内的不规则图像区域。因此,在这项工作中为了保护对象几何外观和分布,我们的目的是利用GCN进行自我监督的深度估计模型。我们的模型包括两个并行自动编码器网络:第一个是一个自动编码器,它取决于Reset-50,并从输入图像和多尺度GCN上提取功能以估计深度图。反过来,第二网络将用于基于Reset-18的两个连续帧之间估计自我运动矢量(即3D姿势)。估计的3D姿势和深度图都将用于构建目标图像。使用与光度,投影和平滑度相关的损耗函数的组合用于应对不良深度预测,并保持对象的不连续性。特别是,我们的方法提供了可比性和有前途的结果,在公共基准和Make3D数据集中的高预测精度为89%,与最先进的解决方案相比,培训参数的数量减少了40%。源代码在https://github.com/arminmasoumian/gcndepth.git上公开可用
translated by 谷歌翻译