Deepstruct连接深度学习模型和图表理论,使得可以对神经网络中的不同图形结构施加,或者可以从训练的神经网络模型中提取图形结构。为此,Deadstruct提供了具有不同限制的深度神经网络模型,可以基于初始图形创建。此外,可以使用培训型号提取图形结构的工具。即使对于仅仅几十千个参数的模型,提取图表的这一步骤也可以计算得很贵,并且构成一个具有挑战性的问题。深度支持神经网络修剪,神经结构搜索,自动网络设计和结构分析的研究。
translated by 谷歌翻译
轻量级模型设计已成为应用深度学习技术的重要方向,修剪是实现模型参数和拖鞋的大量减少的有效均值。现有的神经网络修剪方法主要从参数的重要性开始,以及设计参数评估度量来迭代地执行参数修剪。这些方法不是从模型拓扑的角度研究的,可能是有效但不高效的,并且需要完全不同的不同数据集修剪。在本文中,我们研究了神经网络的图形结构,并提出了常规的基于图的修剪(RGP)来执行单次神经网络修剪。我们生成常规图,将图的节点度值设置为满足修剪比率,并通过将边缘交换以获得最佳边缘分布来降低曲线图的平均最短路径长度。最后,将获得的图形映射到神经网络结构中以实现修剪。实验表明,曲线图的平均最短路径长度与相应神经网络的分类精度负相关,所提出的RGP显示出强的精度保持能力,具有极高的参数减少(超过90%)和拖鞋(更多超过90%)。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
现代的神经网络是著名的,但也高度多余和可压缩。在深度学习文献中存在许多修剪策略,这些策略产生了超过90%的稀疏子网,这些子网已全面训练,密集的体系结构,同时仍保持其原始精度。不过,在这些方法中,由于其概念上的简单性,易于实施和功效 - 迭代幅度修剪(IMP)在实践中占主导地位,并且实际上是在修剪社区中击败的基线。但是,关于为什么像IMP这样的简单方法完全有限的理论解释是很少且有限的。在这项工作中,我们利用持续的同源性的概念来了解IMP的运作,并表明它本质地鼓励保留那些保留受过训练的网络中拓扑信息的权重。随后,我们还提供有关在完美保留其零订单拓扑特征的同时可以修剪多少不同网络的界限,并为IMP的修改版本提供了相同的操作。
translated by 谷歌翻译
由于稀疏神经网络通常包含许多零权重,因此可以在不降低网络性能的情况下潜在地消除这些不必要的网络连接。因此,设计良好的稀疏神经网络具有显着降低拖鞋和计算资源的潜力。在这项工作中,我们提出了一种新的自动修剪方法 - 稀疏连接学习(SCL)。具体地,重量被重新参数化为可培训权重变量和二进制掩模的元素方向乘法。因此,由二进制掩模完全描述网络连接,其由单位步进函数调制。理论上,从理论上证明了使用直通估计器(STE)进行网络修剪的基本原理。这一原则是STE的代理梯度应该是积极的,确保掩模变量在其最小值处收敛。在找到泄漏的Relu后,SoftPlus和Identity Stes可以满足这个原理,我们建议采用SCL的身份STE以进行离散面膜松弛。我们发现不同特征的面具梯度非常不平衡,因此,我们建议将每个特征的掩模梯度标准化以优化掩码变量训练。为了自动训练稀疏掩码,我们将网络连接总数作为我们的客观函数中的正则化术语。由于SCL不需要由网络层设计人员定义的修剪标准或超级参数,因此在更大的假设空间中探讨了网络,以实现最佳性能的优化稀疏连接。 SCL克服了现有自动修剪方法的局限性。实验结果表明,SCL可以自动学习并选择各种基线网络结构的重要网络连接。 SCL培训的深度学习模型以稀疏性,精度和减少脚波特的SOTA人类设计和自动修剪方法训练。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
近年来,行业和学术界的深度学习(DL)迅速发展。但是,找到DL模型的最佳超参数通常需要高计算成本和人类专业知识。为了减轻上述问题,进化计算(EC)作为一种强大的启发式搜索方法显示出在DL模型的自动设计中,所谓的进化深度学习(EDL)具有重要优势。本文旨在从自动化机器学习(AUTOML)的角度分析EDL。具体来说,我们首先从机器学习和EC阐明EDL,并将EDL视为优化问题。根据DL管道的说法,我们系统地介绍了EDL方法,从功能工程,模型生成到具有新的分类法的模型部署(即,什么以及如何发展/优化),专注于解决方案表示和搜索范式的讨论通过EC处理优化问题。最后,提出了关键的应用程序,开放问题以及可能有希望的未来研究线。这项调查回顾了EDL的最新发展,并为EDL的开发提供了有见地的指南。
translated by 谷歌翻译
今天深入学习广泛用于构建软件。深度学习的软件工程问题是找到一个适当的卷积神经网络(CNN)模型,为开发人员可能是一个挑战。最近的自动化工作,更精确的神经结构搜索(NAS),由自动KERAS等工具体现,旨在通过基本上将其视为起始点是默认CNN模型的搜索问题来解决这个问题,以及该CNN模型的突变允许探索CNN模型的空间以找到最适合问题的CNN模型。这些作品在生产高精度CNN模型方面取得了重大成功。然而,有两个问题。首先,NAS可以非常昂贵,通常需要几个小时才能完成。其次,NAS生产的CNN模型可能非常复杂,使得更容易理解它们和肋骨训练它们。我们提出了一种对NAS的新方法,而不是从默认的CNN模型开始,初始模型是从GitHub提取的模型的存储库中选择的。与默认模型相比,直觉是解决类似问题的开发人员可能已经开发出更好的起点。我们还在野外分析了CNN模型的常见层模式,以了解开发人员改善其模型的变化。我们的方法在NAS中使用通常发生的变化变化。我们已经扩展了自动KERAS来实现我们的方法。我们的评估使用8个顶级投票问题来自滑动的拍卖,包括图像分类和图像回归显示,给出了相同的搜索时间,而不会损失准确性,MANAS产生的模型,比Auto-Keras的型号更少为42.9%至99.6%。在GPU上基准测试,Manas的模型训练比汽车keras的型号快30.3%至641.6%。
translated by 谷歌翻译
随着实际图表的扩大,将部署具有数十亿个参数的较大GNN模型。此类模型中的高参数计数使图表的训练和推断昂贵且具有挑战性。为了降低GNN的计算和记忆成本,通常采用了输入图中的冗余节点和边缘等优化方法。但是,直接针对模型层稀疏的模型压缩,主要限于用于图像分类和对象检测等任务的传统深神网络(DNN)。在本文中,我们利用两种最先进的模型压缩方法(1)训练和修剪以及(2)稀疏训练GNN中的重量层。我们评估并比较了两种方法的效率,从精确性,训练稀疏性和现实世界图上的训练拖失lop方面。我们的实验结果表明,在IA-Email,Wiki-Talk和Stackoverflow数据集上,用于链接预测,稀疏训练和较低的训练拖失板可以使用火车和修剪方法达到可比的精度。在用于节点分类的大脑数据集上,稀疏训练使用较低的数字插槽(小于1/7的火车和修剪方法),并在极端模型的稀疏性下保留了更好的精度性能。
translated by 谷歌翻译
学术界和工业广泛研究了图形机器学习。然而,作为图表学习繁荣的文献,具有大量的新兴方法和技术,它越来越难以手动设计用于不同的图形相关任务的最佳机器学习算法。为了解决挑战,自动化图形机器学习,目的是在没有手动设计的不同图表任务/数据中发现最好的图形任务/数据的最佳超参数和神经架构配置,正在增加研究界的越来越多的关注。在本文中,我们广泛地讨论了自动化图形机方法,涵盖了用于图形机学习的超参数优化(HPO)和神经架构搜索(NAS)。我们简要概述了专为Traph Machine学习或自动化机器学习而设计的现有库,进一步深入介绍AutoGL,我们的专用和世界上第一个用于自动图形机器学习的开放源库。最后但并非最不重要的是,我们分享了对自动图形机学习的未来研究方向的见解。本文是对自动图形机学习的方法,图书馆以及方向的第一个系统和全面讨论。
translated by 谷歌翻译
对将AI功能从云上的数据中心转移到边缘或最终设备的需求越来越大,这是由在智能手机,AR/VR设备,自动驾驶汽车和各种汽车上运行的快速实时AI的应用程序举例说明的。物联网设备。然而,由于DNN计算需求与边缘或最终设备上的计算能力之间的较大增长差距,这种转变受到了严重的阻碍。本文介绍了XGEN的设计,这是DNN的优化框架,旨在弥合差距。 XGEN将横切共同设计作为其一阶考虑。它的全栈AI面向AI的优化包括在DNN软件堆栈的各个层的许多创新优化,所有这些优化都以合作的方式设计。独特的技术使XGEN能够优化各种DNN,包括具有极高深度的DNN(例如Bert,GPT,其他变形金刚),并生成代码比现有DNN框架中的代码快几倍,同时提供相同的准确性水平。
translated by 谷歌翻译
The deployment of deep convolutional neural networks (CNNs) in many real world applications is largely hindered by their high computational cost. In this paper, we propose a novel learning scheme for CNNs to simultaneously 1) reduce the model size; 2) decrease the run-time memory footprint; and 3) lower the number of computing operations, without compromising accuracy. This is achieved by enforcing channel-level sparsity in the network in a simple but effective way. Different from many existing approaches, the proposed method directly applies to modern CNN architectures, introduces minimum overhead to the training process, and requires no special software/hardware accelerators for the resulting models. We call our approach network slimming, which takes wide and large networks as input models, but during training insignificant channels are automatically identified and pruned afterwards, yielding thin and compact models with comparable accuracy. We empirically demonstrate the effectiveness of our approach with several state-of-the-art CNN models, including VGGNet, ResNet and DenseNet, on various image classification datasets. For VGGNet, a multi-pass version of network slimming gives a 20× reduction in model size and a 5× reduction in computing operations.
translated by 谷歌翻译
嵌入式和个人物联网设备由微控制器单元(MCU)供电,其极端资源稀缺是依赖于设备的深度学习推断的应用的主要障碍。与通常需要执行神经网络的内容相比,存储器,内存和计算能力较少的秩序,对网络架构上的严格结构约束并呼叫专业模型压缩方法。在这项工作中,我们为卷积神经网络提出了可分散的结构化网络修剪方法,它集成了模型的MCU特定的资源使用和参数重要性反馈,以获得高度压缩但准确的分类模型。我们的方法(a)提高了高达80倍的模型的关键资源使用; (b)在培训型号的同时迭代地修剪,导致没有开销甚至改善培训时间; (c)与现有MCU的特定方法相比,在比较多的时间内生产具有匹配或改进的资源使用的压缩模型。压缩模型可供下载。
translated by 谷歌翻译
图形神经网络(GNNS)由于图形数据的规模和模型参数的数量呈指数增长,因此限制了它们在实际应用中的效用,因此往往会遭受高计算成本。为此,最近的一些作品着重于用彩票假设(LTH)稀疏GNN,以降低推理成本,同时保持绩效水平。但是,基于LTH的方法具有两个主要缺点:1)它们需要对密集模型进行详尽且迭代的训练,从而产生了极大的训练计算成本,2)它们仅修剪图形结构和模型参数,但忽略了节点功能维度,存在大量冗余。为了克服上述局限性,我们提出了一个综合的图形渐进修剪框架,称为CGP。这是通过在一个训练过程中设计在训练图周期修剪范式上进行动态修剪GNN来实现的。与基于LTH的方法不同,提出的CGP方法不需要重新训练,这大大降低了计算成本。此外,我们设计了一个共同策略,以全面地修剪GNN的所有三个核心元素:图形结构,节点特征和模型参数。同时,旨在完善修剪操作,我们将重生过程引入我们的CGP框架,以重新建立修剪但重要的连接。提出的CGP通过在6个GNN体系结构中使用节点分类任务进行评估,包括浅层模型(GCN和GAT),浅但深度散发模型(SGC和APPNP)以及Deep Models(GCNII和RESGCN),总共有14个真实图形数据集,包括来自挑战性开放图基准的大规模图数据集。实验表明,我们提出的策略在匹配时大大提高了训练和推理效率,甚至超过了现有方法的准确性。
translated by 谷歌翻译
使用本机LUT作为独立培训推理运营商的FPGA特定的DNN架构已被证明实现了有利的区域准确性和能量准确性权衡。该领域的第一个工作Lutnet,对标准DNN基准测试表现出最先进的性能。在本文中,我们提出了学习的基于LUT的拓扑结构的优化,从而导致更高效率的设计,而不是通过直接使用现成的手工设计的网络。本类架构的现有实现需要手动规范的每拉特的输入数,K。选择合适的k先验是具有挑战性的,并且在甚至高粒度下这样做,例如,如此。每个层,是一种耗时和错误的过程,可以留下FPGA的空间灵活性欠缺。此外,先验工作请参阅随机连接的LUT输入,不保证网络拓扑的良好选择。为了解决这些问题,我们提出了逻辑收缩,一种细粒度的网格剪枝方法,使K将自动学习,用于针对FPGA推理的神经网络中的每一个LUT。通过删除确定为低于重要性的LUT输入,我们的方法会增加所得加速器的效率。我们的GPU友好的LUT输入拆卸解决方案能够在培训期间加工大型拓扑,可忽略不计的放缓。通过逻辑收缩,我们可以分别更好地完成CNV网络的最佳Lutnet实现的区域和能源效率,分别将CIFAR-10分别达到1.54倍和1.31倍,同时匹配其精度。该实现也达到2.71倍的区域效率同样准确,严重修剪的BNN。在具有双重净架构的Imagenet上,逻辑收缩的就业导致综合后面积减少2.67倍VS Lutnet,允许以前在今天最大的FPGA上实现的实施。
translated by 谷歌翻译
从物理的角度来看,深度神经网络是其“链接”和“顶点”迭代处理数据并以优选求解任务的图形。我们使用复杂的网络理论(CNT)作为定向的加权图代表深神网络(DNN):在此框架内,我们引入指标将DNN作为动力学系统,其粒度从重量到包括神经元在内的层延伸到层。CNT区分参数和神经元数量不同的网络,隐藏层和激活的类型以及客观任务。我们进一步表明,我们的指标会区分低性能网络。CNT是一种理论DNN的综合方法,也是解释模型行为的互补方法,该方法实际上是基于网络理论的,并且超越了研究良好的输入输出关系。
translated by 谷歌翻译
机器学习的进步为低端互联网节点(例如微控制器)带来了新的机会,将情报带入了情报。传统的机器学习部署具有较高的记忆力,并计算足迹阻碍了其在超资源约束的微控制器上的直接部署。本文强调了为MicroController类设备启用机载机器学习的独特要求。研究人员为资源有限的应用程序使用专门的模型开发工作流程,以确保计算和延迟预算在设备限制之内,同时仍保持所需的性能。我们表征了微控制器类设备的机器学习模型开发的广泛适用的闭环工作流程,并表明几类应用程序采用了它的特定实例。我们通过展示多种用例,将定性和数值见解介绍到模型开发的不同阶段。最后,我们确定了开放的研究挑战和未解决的问题,要求仔细考虑前进。
translated by 谷歌翻译
A number of problems can be formulated as prediction on graph-structured data. In this work, we generalize the convolution operator from regular grids to arbitrary graphs while avoiding the spectral domain, which allows us to handle graphs of varying size and connectivity. To move beyond a simple diffusion, filter weights are conditioned on the specific edge labels in the neighborhood of a vertex. Together with the proper choice of graph coarsening, we explore constructing deep neural networks for graph classification. In particular, we demonstrate the generality of our formulation in point cloud classification, where we set the new state of the art, and on a graph classification dataset, where we outperform other deep learning approaches. The source code is available at https://github.com/mys007/ecc.
translated by 谷歌翻译
我们提出了三种新型的修剪技术,以提高推理意识到的可区分神经结构搜索(DNAS)的成本和结果。首先,我们介绍了DNA的随机双路构建块,它可以通过内存和计算复杂性在内部隐藏尺寸上进行搜索。其次,我们在搜索过程中提出了一种在超级网的随机层中修剪块的算法。第三,我们描述了一种在搜索过程中修剪不必要的随机层的新技术。由搜索产生的优化模型称为Prunet,并在Imagenet Top-1图像分类精度的推理潜伏期中为NVIDIA V100建立了新的最先进的Pareto边界。将Prunet作为骨架还优于COCO对象检测任务的GPUNET和EFIDENENET,相对于平均平均精度(MAP)。
translated by 谷歌翻译
Pruning large neural networks while maintaining their performance is often desirable due to the reduced space and time complexity. In existing methods, pruning is done within an iterative optimization procedure with either heuristically designed pruning schedules or additional hyperparameters, undermining their utility. In this work, we present a new approach that prunes a given network once at initialization prior to training. To achieve this, we introduce a saliency criterion based on connection sensitivity that identifies structurally important connections in the network for the given task. This eliminates the need for both pretraining and the complex pruning schedule while making it robust to architecture variations. After pruning, the sparse network is trained in the standard way. Our method obtains extremely sparse networks with virtually the same accuracy as the reference network on the MNIST, CIFAR-10, and Tiny-ImageNet classification tasks and is broadly applicable to various architectures including convolutional, residual and recurrent networks. Unlike existing methods, our approach enables us to demonstrate that the retained connections are indeed relevant to the given task.
translated by 谷歌翻译