轻量级模型设计已成为应用深度学习技术的重要方向,修剪是实现模型参数和拖鞋的大量减少的有效均值。现有的神经网络修剪方法主要从参数的重要性开始,以及设计参数评估度量来迭代地执行参数修剪。这些方法不是从模型拓扑的角度研究的,可能是有效但不高效的,并且需要完全不同的不同数据集修剪。在本文中,我们研究了神经网络的图形结构,并提出了常规的基于图的修剪(RGP)来执行单次神经网络修剪。我们生成常规图,将图的节点度值设置为满足修剪比率,并通过将边缘交换以获得最佳边缘分布来降低曲线图的平均最短路径长度。最后,将获得的图形映射到神经网络结构中以实现修剪。实验表明,曲线图的平均最短路径长度与相应神经网络的分类精度负相关,所提出的RGP显示出强的精度保持能力,具有极高的参数减少(超过90%)和拖鞋(更多超过90%)。
translated by 谷歌翻译
信道修剪中最有效的方法之一是根据每个神经元的重要性来修剪。然而,测量每个神经元的重要性是NP难题。以前的作品通过考虑单层或多个连续的神经元层的统计来修剪。这些作品无法消除不同数据对重建错误模型的影响,并且目前没有工作证明参数的绝对值可以直接用作判断权重的重要性的基础。一种更合理的方法是消除准确测量影响力的批量数据之间的差异。在本文中,我们建议使用集合学习来培训不同批量数据的模型,并使用影响功能(来自强大的统计数据的经典技术)来学习算法跟踪模型的预测并返回其训练参数梯度,使其返回其训练参数梯度,使其返回其培训参数梯度,使其返回其培训参数梯度,使其返回其培训参数梯度,使其返回其训练参数梯度我们可以在预测过程中确定我们称之为“影响”的每个参数的责任。此外,我们理论上证明了深度网络的后传播是权重的影响函数的一阶泰勒近似。我们执行广泛的实验,以证明使用集合学习的思想基于影响功能的修剪将比仅关注误差重建更有效。 CIFAR的实验表明,影响修剪达到最先进的结果。
translated by 谷歌翻译
深度神经网络(DNN)在解决许多真实问题方面都有效。较大的DNN模型通常表现出更好的质量(例如,精度,精度),但它们的过度计算会导致长期推理时间。模型稀疏可以降低计算和内存成本,同时保持模型质量。大多数现有的稀疏算法是单向移除的重量,而其他人则随机或贪婪地探索每层进行修剪的小权重子集。这些算法的局限性降低了可实现的稀疏性水平。此外,许多算法仍然需要预先训练的密集模型,因此遭受大的内存占地面积。在本文中,我们提出了一种新颖的预定生长和修剪(间隙)方法,而无需预先培训密集模型。它通过反复生长一个层次的层来解决以前的作品的缺点,然后在一些训练后修剪回到稀疏。实验表明,使用所提出的方法修剪模型匹配或击败高度优化的密集模型的质量,在各种任务中以80%的稀疏度,例如图像分类,客观检测,3D对象分段和翻译。它们还优于模型稀疏的其他最先进的(SOTA)方法。作为一个例子,通过间隙获得的90%不均匀的稀疏resnet-50模型在想象中实现了77.9%的前1个精度,提高了先前的SOTA结果1.5%。所有代码将公开发布。
translated by 谷歌翻译
图形神经网络(GNNS)由于图形数据的规模和模型参数的数量呈指数增长,因此限制了它们在实际应用中的效用,因此往往会遭受高计算成本。为此,最近的一些作品着重于用彩票假设(LTH)稀疏GNN,以降低推理成本,同时保持绩效水平。但是,基于LTH的方法具有两个主要缺点:1)它们需要对密集模型进行详尽且迭代的训练,从而产生了极大的训练计算成本,2)它们仅修剪图形结构和模型参数,但忽略了节点功能维度,存在大量冗余。为了克服上述局限性,我们提出了一个综合的图形渐进修剪框架,称为CGP。这是通过在一个训练过程中设计在训练图周期修剪范式上进行动态修剪GNN来实现的。与基于LTH的方法不同,提出的CGP方法不需要重新训练,这大大降低了计算成本。此外,我们设计了一个共同策略,以全面地修剪GNN的所有三个核心元素:图形结构,节点特征和模型参数。同时,旨在完善修剪操作,我们将重生过程引入我们的CGP框架,以重新建立修剪但重要的连接。提出的CGP通过在6个GNN体系结构中使用节点分类任务进行评估,包括浅层模型(GCN和GAT),浅但深度散发模型(SGC和APPNP)以及Deep Models(GCNII和RESGCN),总共有14个真实图形数据集,包括来自挑战性开放图基准的大规模图数据集。实验表明,我们提出的策略在匹配时大大提高了训练和推理效率,甚至超过了现有方法的准确性。
translated by 谷歌翻译
由于深度学习模型通常包含数百万可培训的权重,因此对更有效的网络结构具有越来越高的存储空间和提高的运行时效率。修剪是最受欢迎的网络压缩技术之一。在本文中,我们提出了一种新颖的非结构化修剪管线,基于关注的同时稀疏结构和体重学习(ASWL)。与传统的频道和体重注意机制不同,ASWL提出了一种有效的算法来计算每层的层次引起的修剪比率,并且跟踪密度网络和稀疏网络的两种权重,以便修剪结构是同时从随机初始化的权重学习。我们在Mnist,CiFar10和Imagenet上的实验表明,与最先进的网络修剪方法相比,ASWL在准确性,修剪比率和操作效率方面取得了卓越的修剪。
translated by 谷歌翻译
由于稀疏神经网络通常包含许多零权重,因此可以在不降低网络性能的情况下潜在地消除这些不必要的网络连接。因此,设计良好的稀疏神经网络具有显着降低拖鞋和计算资源的潜力。在这项工作中,我们提出了一种新的自动修剪方法 - 稀疏连接学习(SCL)。具体地,重量被重新参数化为可培训权重变量和二进制掩模的元素方向乘法。因此,由二进制掩模完全描述网络连接,其由单位步进函数调制。理论上,从理论上证明了使用直通估计器(STE)进行网络修剪的基本原理。这一原则是STE的代理梯度应该是积极的,确保掩模变量在其最小值处收敛。在找到泄漏的Relu后,SoftPlus和Identity Stes可以满足这个原理,我们建议采用SCL的身份STE以进行离散面膜松弛。我们发现不同特征的面具梯度非常不平衡,因此,我们建议将每个特征的掩模梯度标准化以优化掩码变量训练。为了自动训练稀疏掩码,我们将网络连接总数作为我们的客观函数中的正则化术语。由于SCL不需要由网络层设计人员定义的修剪标准或超级参数,因此在更大的假设空间中探讨了网络,以实现最佳性能的优化稀疏连接。 SCL克服了现有自动修剪方法的局限性。实验结果表明,SCL可以自动学习并选择各种基线网络结构的重要网络连接。 SCL培训的深度学习模型以稀疏性,精度和减少脚波特的SOTA人类设计和自动修剪方法训练。
translated by 谷歌翻译
稀疏培训是一种自然的想法,可以加速深度神经网络的训练速度,并节省内存使用,特别是因为大型现代神经网络被显着过度参数化。然而,大多数现有方法在实践中无法实现这一目标,因为先前方法采用的基于链规则的梯度(W.R.T.结构参数)估计。至少在向后传播步骤中至少需要密集的计算。本文通过提出具有完全稀疏的前后通行证的有效稀疏训练方法来解决这个问题。我们首先在全球稀疏限制下将培训过程制定为连续最小化问题。然后,我们将优化过程分为两个步骤,对应于权重更新和结构参数更新。对于前一步,我们使用传统的链规则,这可以通过利用稀疏结构来稀疏。对于后一步,而不是使用基于链规则的梯度估计器,如现有方法中,我们提出了一个方差减少的策略梯度估计器,这只需要两个向前通过而不向后传播,从而实现完全稀疏的训练。我们证明了我们渐变估计器的差异是界定的。对现实世界数据集的广泛实验结果表明,与以前的方法相比,我们的算法在加速训练过程中更有效,速度快到速度更快。
translated by 谷歌翻译
Pruning refers to the elimination of trivial weights from neural networks. The sub-networks within an overparameterized model produced after pruning are often called Lottery tickets. This research aims to generate winning lottery tickets from a set of lottery tickets that can achieve similar accuracy to the original unpruned network. We introduce a novel winning ticket called Cyclic Overlapping Lottery Ticket (COLT) by data splitting and cyclic retraining of the pruned network from scratch. We apply a cyclic pruning algorithm that keeps only the overlapping weights of different pruned models trained on different data segments. Our results demonstrate that COLT can achieve similar accuracies (obtained by the unpruned model) while maintaining high sparsities. We show that the accuracy of COLT is on par with the winning tickets of Lottery Ticket Hypothesis (LTH) and, at times, is better. Moreover, COLTs can be generated using fewer iterations than tickets generated by the popular Iterative Magnitude Pruning (IMP) method. In addition, we also notice COLTs generated on large datasets can be transferred to small ones without compromising performance, demonstrating its generalizing capability. We conduct all our experiments on Cifar-10, Cifar-100 & TinyImageNet datasets and report superior performance than the state-of-the-art methods.
translated by 谷歌翻译
To reduce the significant redundancy in deep Convolutional Neural Networks (CNNs), most existing methods prune neurons by only considering statistics of an individual layer or two consecutive layers (e.g., prune one layer to minimize the reconstruction error of the next layer), ignoring the effect of error propagation in deep networks. In contrast, we argue that it is essential to prune neurons in the entire neuron network jointly based on a unified goal: minimizing the reconstruction error of important responses in the "final response layer" (FRL), which is the secondto-last layer before classification, for a pruned network to retrain its predictive power. Specifically, we apply feature ranking techniques to measure the importance of each neuron in the FRL, and formulate network pruning as a binary integer optimization problem and derive a closed-form solution to it for pruning neurons in earlier layers. Based on our theoretical analysis, we propose the Neuron Importance Score Propagation (NISP) algorithm to propagate the importance scores of final responses to every neuron in the network. The CNN is pruned by removing neurons with least importance, and then fine-tuned to retain its predictive power. NISP is evaluated on several datasets with multiple CNN models and demonstrated to achieve significant acceleration and compression with negligible accuracy loss.
translated by 谷歌翻译
卷积神经网络(CNN)具有一定量的参数冗余,滤波器修剪旨在去除冗余滤波器,并提供在终端设备上应用CNN的可能性。但是,以前的作品更加注重设计了滤波器重要性的评估标准,然后缩短了具有固定修剪率的重要滤波器或固定数量,以减少卷积神经网络的冗余。它不考虑为每层预留有多少筛选器是最合理的选择。从这个角度来看,我们通过搜索适当的过滤器(SNF)来提出新的过滤器修剪方法。 SNF专用于搜索每层的最合理的保留过滤器,然后是具有特定标准的修剪过滤器。它可以根据不同的拖鞋定制最合适的网络结构。通过我们的方法进行过滤器修剪导致CIFAR-10的最先进(SOTA)精度,并在Imagenet ILSVRC-2012上实现了竞争性能。基于Reset-56网络,在Top-中增加了0.14%的增加0.14% 1对CIFAR-10拖出的52.94%的精度为52.94%。在减少68.68%拖鞋时,CiFar-10上的修剪Resnet-110还提高了0.03%的1 0.03%的精度。对于Imagenet,我们将修剪速率设置为52.10%的拖鞋,前1个精度只有0.74%。该代码可以在https://github.com/pk-l/snf上获得。
translated by 谷歌翻译
模型压缩旨在将深神经网络(DNN)部署在具有有限的计算和存储资源的移动设备上。但是,大多数现有模型压缩方法依赖于手动定义的规则,这些规则需要域专业知识。 DNN基本上是计算图形,其包含丰富的结构信息。在本文中,我们的目标是从DNNS结构信息找到合适的压缩策略。我们提出了一种自动图形编码器 - 解码器模型压缩(AGMC)方法与图形神经网络(GNN)和加强学习(RL)结合。我们将目标DNN模拟为图形并使用GNN自动学习DNN的嵌入物。我们将我们的方法与基于规则的DNN嵌入模型压缩方法进行了比较,以显示我们方法的有效性。结果表明,基于学习的DNN嵌入实现了更好的性能和更高的搜索步骤的压缩比。我们在过度参数化和移动友好的DNN上进行了评估方法,并将我们的方法与基于手工和学习的模型压缩方法进行了比较。在参数化DNN(如Resnet-56)上,我们的方法分别优于3.36 \%$ 4.36 \%$ 4.36 \%$ 4.36 \%$ 2.56 \%$ 2.56 \%的准确性。此外,在MobileNet-V2上,我们达到了比最先进的方法更高的压缩比,只需0.93±%$精度损失。
translated by 谷歌翻译
模型压缩是在功率和内存受限资源上部署深神网络(DNN)的必要技术。但是,现有的模型压缩方法通常依赖于人类的专业知识,并专注于参数的本地重要性,而忽略了DNN中丰富的拓扑信息。在本文中,我们提出了一种基于图神经网络(GNNS)的新型多阶段嵌入技术,以识别DNN拓扑并使用增强学习(RL)以找到合适的压缩策略。我们执行了资源约束(即失败)通道修剪,并将我们的方法与最先进的模型压缩方法进行了比较。我们评估了从典型到移动友好网络的各种模型的方法,例如Resnet家族,VGG-16,Mobilenet-V1/V2和Shufflenet。结果表明,我们的方法可以通过最低的微调成本实现更高的压缩比,但产生了出色和竞争性的表现。
translated by 谷歌翻译
网络压缩对于使深网的效率更高,更快且可推广到低端硬件至关重要。当前的网络压缩方法有两个开放问题:首先,缺乏理论框架来估计最大压缩率;其次,有些层可能会过多地进行,从而导致网络性能大幅下降。为了解决这两个问题,这项研究提出了一种基于梯度矩阵分析方法,以估计最大网络冗余。在最大速率的指导下,开发了一种新颖而有效的层次网络修剪算法,以最大程度地凝结神经元网络结构而无需牺牲网络性能。进行实质性实验以证明新方法修剪几个高级卷积神经网络(CNN)体系结构的功效。与现有的修剪方法相比,拟议的修剪算法实现了最先进的性能。与其他方法相比,在相同或相似的压缩比下,新方法提供了最高的网络预测准确性。
translated by 谷歌翻译
We propose an efficient and unified framework, namely ThiNet, to simultaneously accelerate and compress CNN models in both training and inference stages. We focus on the filter level pruning, i.e., the whole filter would be discarded if it is less important. Our method does not change the original network structure, thus it can be perfectly supported by any off-the-shelf deep learning libraries. We formally establish filter pruning as an optimization problem, and reveal that we need to prune filters based on statistics information computed from its next layer, not the current layer, which differentiates ThiNet from existing methods. Experimental results demonstrate the effectiveness of this strategy, which has advanced the state-of-the-art. We also show the performance of ThiNet on ILSVRC-12 benchmark. ThiNet achieves 3.31× FLOPs reduction and 16.63× compression on VGG-16, with only 0.52% top-5 accuracy drop. Similar experiments with ResNet-50 reveal that even for a compact network, ThiNet can also reduce more than half of the parameters and FLOPs, at the cost of roughly 1% top-5 accuracy drop. Moreover, the original VGG-16 model can be further pruned into a very small model with only 5.05MB model size, preserving AlexNet level accuracy but showing much stronger generalization ability.
translated by 谷歌翻译
Network pruning is widely used for reducing the heavy inference cost of deep models in low-resource settings. A typical pruning algorithm is a three-stage pipeline, i.e., training (a large model), pruning and fine-tuning. During pruning, according to a certain criterion, redundant weights are pruned and important weights are kept to best preserve the accuracy. In this work, we make several surprising observations which contradict common beliefs. For all state-of-the-art structured pruning algorithms we examined, fine-tuning a pruned model only gives comparable or worse performance than training that model with randomly initialized weights. For pruning algorithms which assume a predefined target network architecture, one can get rid of the full pipeline and directly train the target network from scratch. Our observations are consistent for multiple network architectures, datasets, and tasks, which imply that: 1) training a large, over-parameterized model is often not necessary to obtain an efficient final model, 2) learned "important" weights of the large model are typically not useful for the small pruned model, 3) the pruned architecture itself, rather than a set of inherited "important" weights, is more crucial to the efficiency in the final model, which suggests that in some cases pruning can be useful as an architecture search paradigm. Our results suggest the need for more careful baseline evaluations in future research on structured pruning methods. We also compare with the "Lottery Ticket Hypothesis" (Frankle & Carbin, 2019), and find that with optimal learning rate, the "winning ticket" initialization as used in Frankle & Carbin (2019) does not bring improvement over random initialization. * Equal contribution. † Work done while visiting UC Berkeley.
translated by 谷歌翻译
The deployment of deep convolutional neural networks (CNNs) in many real world applications is largely hindered by their high computational cost. In this paper, we propose a novel learning scheme for CNNs to simultaneously 1) reduce the model size; 2) decrease the run-time memory footprint; and 3) lower the number of computing operations, without compromising accuracy. This is achieved by enforcing channel-level sparsity in the network in a simple but effective way. Different from many existing approaches, the proposed method directly applies to modern CNN architectures, introduces minimum overhead to the training process, and requires no special software/hardware accelerators for the resulting models. We call our approach network slimming, which takes wide and large networks as input models, but during training insignificant channels are automatically identified and pruned afterwards, yielding thin and compact models with comparable accuracy. We empirically demonstrate the effectiveness of our approach with several state-of-the-art CNN models, including VGGNet, ResNet and DenseNet, on various image classification datasets. For VGGNet, a multi-pass version of network slimming gives a 20× reduction in model size and a 5× reduction in computing operations.
translated by 谷歌翻译
近年来,深度神经网络在各种应用领域中都有广泛的成功。但是,它们需要重要的计算和内存资源,严重阻碍其部署,特别是在移动设备上或实时应用程序。神经网络通常涉及大量参数,该参数对应于网络的权重。在培训过程中获得的这种参数是用于网络性能的决定因素。但是,它们也非常冗余。修剪方法尤其试图通过识别和移除不相关的重量来减小参数集的大小。在本文中,我们研究了培训策略对修剪效率的影响。考虑和比较了两种培训方式:(1)微调和(2)从头开始。在四个数据集(CIFAR10,CiFAR100,SVHN和CALTECH101)上获得的实验结果和两个不同的CNNS(VGG16和MOBILENET)证明已经在大语料库(例如想象成)上预先培训的网络,然后进行微调特定数据集可以更有效地修剪(高达80%的参数减少),而不是从头开始培训的相同网络。
translated by 谷歌翻译
随着实际图表的扩大,将部署具有数十亿个参数的较大GNN模型。此类模型中的高参数计数使图表的训练和推断昂贵且具有挑战性。为了降低GNN的计算和记忆成本,通常采用了输入图中的冗余节点和边缘等优化方法。但是,直接针对模型层稀疏的模型压缩,主要限于用于图像分类和对象检测等任务的传统深神网络(DNN)。在本文中,我们利用两种最先进的模型压缩方法(1)训练和修剪以及(2)稀疏训练GNN中的重量层。我们评估并比较了两种方法的效率,从精确性,训练稀疏性和现实世界图上的训练拖失lop方面。我们的实验结果表明,在IA-Email,Wiki-Talk和Stackoverflow数据集上,用于链接预测,稀疏训练和较低的训练拖失板可以使用火车和修剪方法达到可比的精度。在用于节点分类的大脑数据集上,稀疏训练使用较低的数字插槽(小于1/7的火车和修剪方法),并在极端模型的稀疏性下保留了更好的精度性能。
translated by 谷歌翻译
最近,稀疏的培训方法已开始作为事实上的人工神经网络的培训和推理效率的方法。然而,这种效率只是理论上。在实践中,每个人都使用二进制掩码来模拟稀疏性,因为典型的深度学习软件和硬件已针对密集的矩阵操作进行了优化。在本文中,我们采用正交方法,我们表明我们可以训练真正稀疏的神经网络以收获其全部潜力。为了实现这一目标,我们介绍了三个新颖的贡献,这些贡献是专门为稀疏神经网络设计的:(1)平行训练算法及其相应的稀疏实现,(2)具有不可训练的参数的激活功能,以支持梯度流动,以支持梯度流量, (3)隐藏的神经元对消除冗余的重要性指标。总而言之,我们能够打破记录并训练有史以来最大的神经网络在代表力方面训练 - 达到蝙蝠大脑的大小。结果表明,我们的方法具有最先进的表现,同时为环保人工智能时代开辟了道路。
translated by 谷歌翻译
神经网络修剪具有显着性能,可以降低深网络模型的复杂性。最近的网络修剪方法通常集中在网络中删除不重要或冗余过滤器。在本文中,通过探索特征图之间的相似性,我们提出了一种新颖的滤波器修剪方法,中央滤波器(CF),这表明在适当的调整之后滤波器大致等于一组其他滤波器。我们的方法基于发现特征贴图之间的平均相似性的发现,而不管输入图像的数量如何,都会很少变化。基于此发现,我们在特征映射上建立相似性图,并计算每个节点的近密中心以选择中央滤波器。此外,我们设计一种方法,可以在与中央滤波器对应的下一层中直接调整权重,有效地最小化由修剪引起的误差。通过对各种基准网络和数据集的实验,CF产生最先进的性能。例如,对于Reset-56,CF通过去除47.1%的参数来减少约39.7%的絮凝物,甚至在CiFar-10上的精度改善0.33%。通过Googlenet,CF通过去除55.6%的参数来减少大约63.2%的拖鞋,仅在CIFAR-10上的前1个精度下降0.35%的损失。通过resnet-50,CF通过去除36.9%的参数减少约47.9%的拖鞋,仅在Imagenet上的前1个精度下降1.07%。该代码可以在https://github.com/8ubpshlr23/centrter上获得。
translated by 谷歌翻译