Deep Reinforcement Learning has yielded proficient controllers for complex tasks. However, these controllers have limited memory and rely on being able to perceive the complete game screen at each decision point. To address these shortcomings, this article investigates the effects of adding recurrency to a Deep Q-Network (DQN) by replacing the first post-convolutional fully-connected layer with a recurrent LSTM. The resulting Deep Recurrent Q-Network (DRQN), although capable of seeing only a single frame at each timestep, successfully integrates information through time and replicates DQN's performance on standard Atari games and partially observed equivalents featuring flickering game screens. Additionally, when trained with partial observations and evaluated with incrementally more complete observations, DRQN's performance scales as a function of observability. Conversely, when trained with full observations and evaluated with partial observations, DRQN's performance degrades less than DQN's. Thus, given the same length of history, recurrency is a viable alternative to stacking a history of frames in the DQN's input layer and while recurrency confers no systematic advantage when learning to play the game, the recurrent net can better adapt at evaluation time if the quality of observations changes.
translated by 谷歌翻译
We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We find that it outperforms all previous approaches on six of the games and surpasses a human expert on three of them.
translated by 谷歌翻译
在这项工作中,我们提出并评估了一种新的增强学习方法,紧凑体验重放(编者),它使用基于相似转换集的复发的预测目标值的时间差异学习,以及基于两个转换的经验重放的新方法记忆。我们的目标是减少在长期累计累计奖励的经纪人培训所需的经验。它与强化学习的相关性与少量观察结果有关,即它需要实现类似于文献中的相关方法获得的结果,这通常需要数百万视频框架来培训ATARI 2600游戏。我们举报了在八个挑战街机学习环境(ALE)挑战游戏中,为仅10万帧的培训试验和大约25,000次迭代的培训试验中报告了培训试验。我们还在与基线的同一游戏中具有相同的实验协议的DQN代理呈现结果。为了验证从较少数量的观察结果近似于良好的政策,我们还将其结果与从啤酒的基准上呈现的数百万帧中获得的结果进行比较。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
Efficient exploration remains a major challenge for reinforcement learning (RL). Common dithering strategies for exploration, such as -greedy, do not carry out temporally-extended (or deep) exploration; this can lead to exponentially larger data requirements. However, most algorithms for statistically efficient RL are not computationally tractable in complex environments. Randomized value functions offer a promising approach to efficient exploration with generalization, but existing algorithms are not compatible with nonlinearly parameterized value functions. As a first step towards addressing such contexts we develop bootstrapped DQN. We demonstrate that bootstrapped DQN can combine deep exploration with deep neural networks for exponentially faster learning than any dithering strategy. In the Arcade Learning Environment bootstrapped DQN substantially improves learning speed and cumulative performance across most games.
translated by 谷歌翻译
在实际应用中,尽管这种知识对于确定反应性控制系统与环境的精确相互作用很重要,但我们很少可以完全观察到系统的环境。因此,我们提出了一种在部分可观察到的环境中进行加固学习方法(RL)。在假设环境的行为就像是可观察到的马尔可夫决策过程,但我们对其结构或过渡概率不了解。我们的方法将Q学习与IOALERGIA结合在一起,这是一种学习马尔可夫决策过程(MDP)的方法。通过从RL代理的发作中学习环境的MDP模型,我们可以在不明确的部分可观察到的域中启用RL,而没有明确的记忆,以跟踪以前的相互作用,以处理由部分可观察性引起的歧义。相反,我们通过模拟学习环境模型上的新体验以跟踪探索状态,以抽象环境状态的形式提供其他观察结果。在我们的评估中,我们报告了方法的有效性及其有希望的性能,与六种具有复发性神经网络和固定记忆的最先进的深度RL技术相比。
translated by 谷歌翻译
We propose a conceptually simple and lightweight framework for deep reinforcement learning that uses asynchronous gradient descent for optimization of deep neural network controllers. We present asynchronous variants of four standard reinforcement learning algorithms and show that parallel actor-learners have a stabilizing effect on training allowing all four methods to successfully train neural network controllers. The best performing method, an asynchronous variant of actor-critic, surpasses the current state-of-the-art on the Atari domain while training for half the time on a single multi-core CPU instead of a GPU. Furthermore, we show that asynchronous actor-critic succeeds on a wide variety of continuous motor control problems as well as on a new task of navigating random 3D mazes using a visual input.
translated by 谷歌翻译
In recent years there have been many successes of using deep representations in reinforcement learning. Still, many of these applications use conventional architectures, such as convolutional networks, LSTMs, or auto-encoders. In this paper, we present a new neural network architecture for model-free reinforcement learning. Our dueling network represents two separate estimators: one for the state value function and one for the state-dependent action advantage function. The main benefit of this factoring is to generalize learning across actions without imposing any change to the underlying reinforcement learning algorithm. Our results show that this architecture leads to better policy evaluation in the presence of many similar-valued actions. Moreover, the dueling architecture enables our RL agent to outperform the state-of-the-art on the Atari 2600 domain.
translated by 谷歌翻译
The deep reinforcement learning community has made several independent improvements to the DQN algorithm. However, it is unclear which of these extensions are complementary and can be fruitfully combined. This paper examines six extensions to the DQN algorithm and empirically studies their combination. Our experiments show that the combination provides state-of-the-art performance on the Atari 2600 benchmark, both in terms of data efficiency and final performance. We also provide results from a detailed ablation study that shows the contribution of each component to overall performance.
translated by 谷歌翻译
We adapt the ideas underlying the success of Deep Q-Learning to the continuous action domain. We present an actor-critic, model-free algorithm based on the deterministic policy gradient that can operate over continuous action spaces. Using the same learning algorithm, network architecture and hyper-parameters, our algorithm robustly solves more than 20 simulated physics tasks, including classic problems such as cartpole swing-up, dexterous manipulation, legged locomotion and car driving. Our algorithm is able to find policies whose performance is competitive with those found by a planning algorithm with full access to the dynamics of the domain and its derivatives. We further demonstrate that for many of the tasks the algorithm can learn policies "end-to-end": directly from raw pixel inputs.
translated by 谷歌翻译
独立的强化学习算法没有理论保证,用于在多代理设置中找到最佳策略。然而,在实践中,先前的作品报告了在某些域中的独立算法和其他方面的良好性能。此外,文献中缺乏对独立算法的优势和弱点的全面研究。在本文中,我们对四个Pettingzoo环境进行了独立算法的性能的实证比较,这些环境跨越了三种主要类别的多助理环境,即合作,竞争和混合。我们表明,在完全可观察的环境中,独立的算法可以在协作和竞争环境中与多代理算法进行同步。对于混合环境,我们表明通过独立算法培训的代理商学会单独执行,但未能学会与盟友合作并与敌人竞争。我们还表明,添加重复性提高了合作部分可观察环境中独立算法的学习。
translated by 谷歌翻译
Real-world reinforcement learning tasks often involve some form of partial observability where the observations only give a partial or noisy view of the true state of the world. Such tasks typically require some form of memory, where the agent has access to multiple past observations, in order to perform well. One popular way to incorporate memory is by using a recurrent neural network to access the agent's history. However, recurrent neural networks in reinforcement learning are often fragile and difficult to train, susceptible to catastrophic forgetting and sometimes fail completely as a result. In this work, we propose Deep Transformer Q-Networks (DTQN), a novel architecture utilizing transformers and self-attention to encode an agent's history. DTQN is designed modularly, and we compare results against several modifications to our base model. Our experiments demonstrate the transformer can solve partially observable tasks faster and more stably than previous recurrent approaches.
translated by 谷歌翻译
Learning goal-directed behavior in environments with sparse feedback is a major challenge for reinforcement learning algorithms. The primary difficulty arises due to insufficient exploration, resulting in an agent being unable to learn robust value functions. Intrinsically motivated agents can explore new behavior for its own sake rather than to directly solve problems. Such intrinsic behaviors could eventually help the agent solve tasks posed by the environment. We present hierarchical-DQN (h-DQN), a framework to integrate hierarchical value functions, operating at different temporal scales, with intrinsically motivated deep reinforcement learning. A top-level value function learns a policy over intrinsic goals, and a lower-level function learns a policy over atomic actions to satisfy the given goals. h-DQN allows for flexible goal specifications, such as functions over entities and relations. This provides an efficient space for exploration in complicated environments. We demonstrate the strength of our approach on two problems with very sparse, delayed feedback: (1) a complex discrete stochastic decision process, and (2) the classic ATARI game 'Montezuma's Revenge'.
translated by 谷歌翻译
在探索中,由于当前的低效率而引起的强化学习领域,具有较大动作空间的学习控制政策是一个具有挑战性的问题。在这项工作中,我们介绍了深入的强化学习(DRL)算法呼叫多动作网络(MAN)学习,以应对大型离散动作空间的挑战。我们建议将动作空间分为两个组件,从而为每个子行动创建一个值神经网络。然后,人使用时间差异学习来同步训练网络,这比训练直接动作输出的单个网络要简单。为了评估所提出的方法,我们在块堆叠任务上测试了人,然后扩展了人类从Atari Arcade学习环境中使用18个动作空间的12个游戏。我们的结果表明,人的学习速度比深Q学习和双重Q学习更快,这意味着我们的方法比当前可用于大型动作空间的方法更好地执行同步时间差异算法。
translated by 谷歌翻译
通过回顾一封来自情节记忆的过去的经验,可以通过回忆过去的经验来实现钢筋学习的样本效率。我们提出了一种新的基于模型的轨迹的集体记忆,解决了集体控制的当前限制。我们的记忆估计轨迹值,指导代理人朝着良好的政策。基于内存构建,我们通过动态混合控制统一模型的基于动态和习惯学习来构建互补学习模型,进入单个架构。实验表明,我们的模型可以比各种环境中的其他强力加强学习代理更快,更好地学习,包括随机和非马尔可夫环境。
translated by 谷歌翻译
In this article we introduce the Arcade Learning Environment (ALE): both a challenge problem and a platform and methodology for evaluating the development of general, domain-independent AI technology. ALE provides an interface to hundreds of Atari 2600 game environments, each one different, interesting, and designed to be a challenge for human players. ALE presents significant research challenges for reinforcement learning, model learning, model-based planning, imitation learning, transfer learning, and intrinsic motivation. Most importantly, it provides a rigorous testbed for evaluating and comparing approaches to these problems. We illustrate the promise of ALE by developing and benchmarking domain-independent agents designed using well-established AI techniques for both reinforcement learning and planning. In doing so, we also propose an evaluation methodology made possible by ALE, reporting empirical results on over 55 different games. All of the software, including the benchmark agents, is publicly available.
translated by 谷歌翻译
Deep reinforcement learning (RL) has achieved several high profile successes in difficult decision-making problems. However, these algorithms typically require a huge amount of data before they reach reasonable performance. In fact, their performance during learning can be extremely poor. This may be acceptable for a simulator, but it severely limits the applicability of deep RL to many real-world tasks, where the agent must learn in the real environment. In this paper we study a setting where the agent may access data from previous control of the system. We present an algorithm, Deep Q-learning from Demonstrations (DQfD), that leverages small sets of demonstration data to massively accelerate the learning process even from relatively small amounts of demonstration data and is able to automatically assess the necessary ratio of demonstration data while learning thanks to a prioritized replay mechanism. DQfD works by combining temporal difference updates with supervised classification of the demonstrator's actions. We show that DQfD has better initial performance than Prioritized Dueling Double Deep Q-Networks (PDD DQN) as it starts with better scores on the first million steps on 41 of 42 games and on average it takes PDD DQN 83 million steps to catch up to DQfD's performance. DQfD learns to out-perform the best demonstration given in 14 of 42 games. In addition, DQfD leverages human demonstrations to achieve state-of-the-art results for 11 games. Finally, we show that DQfD performs better than three related algorithms for incorporating demonstration data into DQN.
translated by 谷歌翻译
Constructing agents with planning capabilities has long been one of the main challenges in the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge success in challenging domains, such as chess and Go, where a perfect simulator is available. However, in real-world problems the dynamics governing the environment are often complex and unknown. In this work we present the MuZero algorithm which, by combining a tree-based search with a learned model, achieves superhuman performance in a range of challenging and visually complex domains, without any knowledge of their underlying dynamics. MuZero learns a model that, when applied iteratively, predicts the quantities most directly relevant to planning: the reward, the action-selection policy, and the value function. When evaluated on 57 different Atari games -the canonical video game environment for testing AI techniques, in which model-based planning approaches have historically struggled -our new algorithm achieved a new state of the art. When evaluated on Go, chess and shogi, without any knowledge of the game rules, MuZero matched the superhuman performance of the AlphaZero algorithm that was supplied with the game rules.
translated by 谷歌翻译
A long-standing challenge in artificial intelligence is lifelong learning. In lifelong learning, many tasks are presented in sequence and learners must efficiently transfer knowledge between tasks while avoiding catastrophic forgetting over long lifetimes. On these problems, policy reuse and other multi-policy reinforcement learning techniques can learn many tasks. However, they can generate many temporary or permanent policies, resulting in memory issues. Consequently, there is a need for lifetime-scalable methods that continually refine a policy library of a pre-defined size. This paper presents a first approach to lifetime-scalable policy reuse. To pre-select the number of policies, a notion of task capacity, the maximal number of tasks that a policy can accurately solve, is proposed. To evaluate lifetime policy reuse using this method, two state-of-the-art single-actor base-learners are compared: 1) a value-based reinforcement learner, Deep Q-Network (DQN) or Deep Recurrent Q-Network (DRQN); and 2) an actor-critic reinforcement learner, Proximal Policy Optimisation (PPO) with or without Long Short-Term Memory layer. By selecting the number of policies based on task capacity, D(R)QN achieves near-optimal performance with 6 policies in a 27-task MDP domain and 9 policies in an 18-task POMDP domain; with fewer policies, catastrophic forgetting and negative transfer are observed. Due to slow, monotonic improvement, PPO requires fewer policies, 1 policy for the 27-task domain and 4 policies for the 18-task domain, but it learns the tasks with lower accuracy than D(R)QN. These findings validate lifetime-scalable policy reuse and suggest using D(R)QN for larger and PPO for smaller library sizes.
translated by 谷歌翻译