徒手3D超声(US)由于其低成本和不受限制的视野而具有重要的临床价值。最近,深度学习算法已消除了其对笨重且昂贵的外部定位设备的依赖。然而,难以高程位移估计和大量累积漂移仍阻碍了改善重建精度。在这种情况下,我们提出了一个新颖的深度运动网络(MONET),该网络集成了图像和轻巧的传感器,从速度的角度来看,称为惯性测量单元(IMU),以减轻上述障碍。我们的贡献是两个方面。首先,我们首次介绍IMU加速度,以估计飞机外的高度位移。我们提出了一个时间和多分支结构,以挖掘低信噪比(SNR)加速度的宝贵信息。其次,我们提出了一种多模式的在线自制策略,该策略利用IMU信息作为弱标签进行自适应优化,以减少漂移错误并进一步改善加速噪声的影响。实验表明,我们所提出的方法实现了优越的重建性能,超过了最先进的方法。
translated by 谷歌翻译
本文提出了一种轻巧,有效的校准神经网络模型,用于降低低成本微电力系统(MEMS)陀螺仪,并实时估算机器人的态度。关键思想是从惯性测量单元(IMU)测量的时间窗口中提取本地和全局特征,以动态地回归陀螺仪的输出补偿组件。遵循精心推导的数学校准模型,LGC-NET利用深度可分离的卷积捕获截面特征并减少网络模型参数。较大的内核注意力旨在更好地学习远程依赖性和特征表示。在EUROC和TUM-VI数据集中评估了所提出的算法,并在具有更轻巧模型结构的(看不见的)测试序列上实现了最先进的测试。尽管它不采用视觉传感器,但与我们的LGC-NET的估计取向与排名最高的视觉惯性探针系统相当。我们在:https://github.com/huazai665/lgc-net上进行开源方法
translated by 谷歌翻译
本文介绍了旋转等级,作为训练惯性内径型号的自我主管。我们证明自我监督方案在训练阶段以及推理阶段提供了强大的监督信号。它降低了对训练鲁棒模型的大量标记数据的依赖性,并且可以使用各种未标记的数据更新模型。此外,我们基于不确定性估计提出了自适应测试时间训练(TTT),以便提高惯性内径术的概括性与各种看不见的数据。我们在实验中展示了具有30%数据训练的旋转等因素监督的惯性内径(RIO)验证的训练,达到了与整个数据库训练的模型的对比。Adaptive TTT在所有情况下提高了模型性能,在若干方案下会产生超过25%的改进。
translated by 谷歌翻译
最近,数据驱动的惯性导航方法已经证明了它们使用训练有素的神经网络的能力,以获得来自惯性测量单元(IMU)测量的精确位置估计。在本文中,我们提出了一种用于惯性导航〜(CTIN)的基于鲁棒的基于变压器的网络,以准确地预测速度和轨迹。为此,我们首先通过本地和全局多头自我注意力增强基于Reset的编码器,以捕获来自IMU测量的空间上下文信息。然后,我们通过在变压器解码器中利用多针头注意,使用时间知识来熔化这些空间表示。最后,利用不确定性减少的多任务学习,以提高速度和轨迹的学习效率和预测准确性。通过广泛的实验在各种惯性数据集中〜(例如,ridi,oxiod,ronin,偶像和我们自己的),CTIN非常坚固,优于最先进的模型。
translated by 谷歌翻译
对于大多数LIDAR惯性进程,精确的初始状态,包括LiDAR和6轴IMU之间的时间偏移和外部转换,起着重要作用,通常被视为先决条件。但是,这种信息可能不会始终在定制的激光惯性系统中获得。在本文中,我们提出了liinit:一个完整​​的实时激光惯性系统初始化过程,该过程校准了激光雷达和imus之间的时间偏移和外部参数,以及通过对齐从激光雷达估计的状态来校准重力矢量和IMU偏置通过IMU测量的测量。我们将提出的方法实现为初始化模块,如果启用了,该模块会自动检测到收集的数据的激发程度并校准,即直接偏移,外部偏移,外部,重力向量和IMU偏置,然后是这样的。用作实时激光惯性射测系统的高质量初始状态值。用不同类型的LIDAR和LIDAR惯性组合进行的实验表明我们初始化方法的鲁棒性,适应性和效率。我们的LIDAR惯性初始化过程LIINIT和测试数据的实现在GitHub上开源,并集成到最先进的激光辐射射击轨道测定系统FastLiO2中。
translated by 谷歌翻译
准确而健壮的本地化是移动代理的基本需求。视觉惯性进程(VIO)算法将信息从摄像机和惯性传感器中利用到估计位置和翻译。最近基于深度学习的VIO模型以数据驱动的方式提供姿势信息,而无需设计手工制作的算法,因此吸引了注意力。现有的基于学习的VIO模型依赖于经常性模型来融合多模式数据和过程传感器信号,这些模型很难训练并且不够有效。我们提出了一个基于学习的新型VIO框架,并有效地结合了视觉和惯性特征,以供各州估计。我们提出的模型也能够准确,稳健地估计,即使在具有挑战性的情况下,例如在阴天和充满水的地面上,对于传统的Vio算法而言,这很难提取视觉特征。实验验证了它在不同场景中的表现优于传统和基于学习的VIO基线。
translated by 谷歌翻译
A reliable self-contained navigation system is essential for autonomous vehicles. Based on our previous study on Wheel-INS \cite{niu2019}, a wheel-mounted inertial measurement unit (Wheel-IMU)-based dead reckoning (DR) system, in this paper, we propose a multiple IMUs-based DR solution for the wheeled robots. The IMUs are mounted at different places of the wheeled vehicles to acquire various dynamic information. In particular, at least one IMU has to be mounted at the wheel to measure the wheel velocity and take advantages of the rotation modulation. The system is implemented through a distributed extended Kalman filter structure where each subsystem (corresponding to each IMU) retains and updates its own states separately. The relative position constraints between the multiple IMUs are exploited to further limit the error drift and improve the system robustness. Particularly, we present the DR systems using dual Wheel-IMUs, one Wheel-IMU plus one vehicle body-mounted IMU (Body-IMU), and dual Wheel-IMUs plus one Body-IMU as examples for analysis and comparison. Field tests illustrate that the proposed multi-IMU DR system outperforms the single Wheel-INS in terms of both positioning and heading accuracy. By comparing with the centralized filter, the proposed distributed filter shows unimportant accuracy degradation while holds significant computation efficiency. Moreover, among the three multi-IMU configurations, the one Body-IMU plus one Wheel-IMU design obtains the minimum drift rate. The position drift rates of the three configurations are 0.82\% (dual Wheel-IMUs), 0.69\% (one Body-IMU plus one Wheel-IMU), and 0.73\% (dual Wheel-IMUs plus one Body-IMU), respectively.
translated by 谷歌翻译
Visual Inertial Odometry (VIO) is one of the most established state estimation methods for mobile platforms. However, when visual tracking fails, VIO algorithms quickly diverge due to rapid error accumulation during inertial data integration. This error is typically modeled as a combination of additive Gaussian noise and a slowly changing bias which evolves as a random walk. In this work, we propose to train a neural network to learn the true bias evolution. We implement and compare two common sequential deep learning architectures: LSTMs and Transformers. Our approach follows from recent learning-based inertial estimators, but, instead of learning a motion model, we target IMU bias explicitly, which allows us to generalize to locomotion patterns unseen in training. We show that our proposed method improves state estimation in visually challenging situations across a wide range of motions by quadrupedal robots, walking humans, and drones. Our experiments show an average 15% reduction in drift rate, with much larger reductions when there is total vision failure. Importantly, we also demonstrate that models trained with one locomotion pattern (human walking) can be applied to another (quadruped robot trotting) without retraining.
translated by 谷歌翻译
由于低成本的惯性传感器误差积累,行人死的估算是一项具有挑战性的任务。最近的研究表明,深度学习方法可以在处理此问题时获得令人印象深刻的性能。在这封信中,我们使用基于深度学习的速度估计方法提出了惯性的进程。基于RES2NET模块和两个卷积块注意模块的深神经网络被利用,以恢复智能手机的水平速度矢量与原始惯性数据之间的潜在连接。我们的网络仅使用百分之五十的公共惯性探子仪数据集(RONIN)数据进行培训。然后,在Ronin测试数据集和另一个公共惯性探针数据集(OXIOD)上进行了验证。与传统的阶梯长度和基于标题的基于系统的算法相比,我们的方法将绝对翻译误差(ATE)降低了76%-86%。此外,与最先进的深度学习方法(Ronin)相比,我们的方法将其ATE提高了6%-31.4%。
translated by 谷歌翻译
Three-dimensional (3D) freehand ultrasound (US) reconstruction without a tracker can be advantageous over its two-dimensional or tracked counterparts in many clinical applications. In this paper, we propose to estimate 3D spatial transformation between US frames from both past and future 2D images, using feed-forward and recurrent neural networks (RNNs). With the temporally available frames, a further multi-task learning algorithm is proposed to utilise a large number of auxiliary transformation-predicting tasks between them. Using more than 40,000 US frames acquired from 228 scans on 38 forearms of 19 volunteers in a volunteer study, the hold-out test performance is quantified by frame prediction accuracy, volume reconstruction overlap, accumulated tracking error and final drift, based on ground-truth from an optical tracker. The results show the importance of modelling the temporal-spatially correlated input frames as well as output transformations, with further improvement owing to additional past and/or future frames. The best performing model was associated with predicting transformation between moderately-spaced frames, with an interval of less than ten frames at 20 frames per second (fps). Little benefit was observed by adding frames more than one second away from the predicted transformation, with or without LSTM-based RNNs. Interestingly, with the proposed approach, explicit within-sequence loss that encourages consistency in composing transformations or minimises accumulated error may no longer be required. The implementation code and volunteer data will be made publicly available ensuring reproducibility and further research.
translated by 谷歌翻译
GNSS and LiDAR odometry are complementary as they provide absolute and relative positioning, respectively. Their integration in a loosely-coupled manner is straightforward but is challenged in urban canyons due to the GNSS signal reflections. Recent proposed 3D LiDAR-aided (3DLA) GNSS methods employ the point cloud map to identify the non-line-of-sight (NLOS) reception of GNSS signals. This facilitates the GNSS receiver to obtain improved urban positioning but not achieve a sub-meter level. GNSS real-time kinematics (RTK) uses carrier phase measurements to obtain decimeter-level positioning. In urban areas, the GNSS RTK is not only challenged by multipath and NLOS-affected measurement but also suffers from signal blockage by the building. The latter will impose a challenge in solving the ambiguity within the carrier phase measurements. In the other words, the model observability of the ambiguity resolution (AR) is greatly decreased. This paper proposes to generate virtual satellite (VS) measurements using the selected LiDAR landmarks from the accumulated 3D point cloud maps (PCM). These LiDAR-PCM-made VS measurements are tightly-coupled with GNSS pseudorange and carrier phase measurements. Thus, the VS measurements can provide complementary constraints, meaning providing low-elevation-angle measurements in the across-street directions. The implementation is done using factor graph optimization to solve an accurate float solution of the ambiguity before it is fed into LAMBDA. The effectiveness of the proposed method has been validated by the evaluation conducted on our recently open-sourced challenging dataset, UrbanNav. The result shows the fix rate of the proposed 3DLA GNSS RTK is about 30% while the conventional GNSS-RTK only achieves about 14%. In addition, the proposed method achieves sub-meter positioning accuracy in most of the data collected in challenging urban areas.
translated by 谷歌翻译
在3D人类姿势估计任务中存在挑战性问题,例如由遮挡和自我封闭引起的性能差。最近,IMU-Vision传感器融合被认为对于解决这些问题很有价值。但是,先前关于IMU和视觉数据的融合的研究(异质性)无法充分利用IMU原始数据或可靠的高级视觉功能。为了促进更有效的传感器融合,在这项工作中,我们提出了一个在参数人运动模型下的框架,称为\ emph {fusepose}。具体而言,我们汇总了IMU或视觉数据的不同信息,并引入了三种独特的传感器融合方法:NaiveFuse,Kinefuse和AdadeEpfuse。 NaiveFuse服务器是一种基本方法,仅融合简化的IMU数据并估计欧几里得空间中的3D姿势。在运动学空间中,KineFuse能够将校准和对齐的IMU原始数据与转换后的3D姿势参数集成在一起。 AdadeEpfuse进一步将这种运动学融合过程发展为一种适应性和端到端的训练方式。进行消融研究的综合实验表明了所提出的框架的合理性和优越性。与基线结果相比,3D人姿势估计的性能得到了提高。在Total Capture数据集上,KineFuse超过了先前的最新技术,该最新仅用于测试8.6 \%。 AdadeEpfuse超过了最新的,该技术使用IMU进行培训和测试的最新时间为8.5 \%。此外,我们通过对人类360万数据集的实验来验证框架的概括能力。
translated by 谷歌翻译
通过实现复杂场景实现长期漂移相机姿势估计的目标,我们提出了一种全球定位框架,融合了多层的视觉,惯性和全球导航卫星系统(GNSS)测量。不同于以前的松散和紧密耦合的方法,所提出的多层融合允许我们彻底校正视觉测量仪的漂移,并在GNSS降解时保持可靠的定位。特别地,通过融合GNSS的速度,在紧紧地集成的情况下,解决视觉测量测量测量测量率和偏差估计中的尺度漂移和偏差估计的问题的问题,惯性测量单元(IMU)的预集成以及紧密相机测量的情况下 - 耦合的方式。在外层中实现全局定位,其中局部运动进一步与GNSS位置和基于长期时期的过程以松散耦合的方式融合。此外,提出了一种专用的初始化方法,以保证所有状态变量和参数的快速准确估计。我们为室内和室外公共数据集提供了拟议框架的详尽测试。平均本地化误差减少了63%,而初始化精度与最先进的工程相比,促销率为69%。我们已将算法应用于增强现实(AR)导航,人群采购高精度地图更新等大型应用。
translated by 谷歌翻译
安装在微空中车辆(MAV)上的地面穿透雷达是有助于协助人道主义陆地间隙的工具。然而,合成孔径雷达图像的质量取决于雷达天线的准确和精确运动估计以及与MAV产生信息性的观点。本文介绍了一个完整的自动空气缩进的合成孔径雷达(GPSAR)系统。该系统由空间校准和时间上同步的工业级传感器套件组成,使得在地面上方,雷达成像和光学成像。自定义任务规划框架允许在地上控制地上的Stripmap和圆形(GPSAR)轨迹的生成和自动执行,以及空中成像调查飞行。基于因子图基于Dual接收机实时运动(RTK)全局导航卫星系统(GNSS)和惯性测量单元(IMU)的测量值,以获得精确,高速平台位置和方向。地面真理实验表明,传感器时机为0.8美元,正如0.1美元的那样,定位率为1 kHz。与具有不确定标题初始化的单个位置因子相比,双位置因子配方可提高高达40%,批量定位精度高达59%。我们的现场试验验证了本地化准确性和精度,使得能够相干雷达测量和检测在沙子中埋入的雷达目标。这验证了作为鸟瞰着地图检测系统的潜力。
translated by 谷歌翻译
在本文中,我们介绍了全球导航卫星系统(GNSS)辅助激光乐队 - 视觉惯性方案RAILTOMER-V,用于准确且坚固的铁路车辆本地化和映射。 Raillomer-V在因子图上制定,由两个子系统组成:辅助LiDar惯性系统(OLIS)和距离的内径综合视觉惯性系统(OVI)。两个子系统都利用了铁路上的典型几何结构。提取的轨道轨道的平面约束用于补充OLI中的旋转和垂直误差。此外,线特征和消失点被利用以限制卵巢中的旋转漂移。拟议的框架在800公里的数据集中广泛评估,聚集在一年以上的一般速度和高速铁路,日夜。利用各个传感器的所有测量的紧密耦合集成,我们的框架准确到了长期的任务,并且足够强大地避免了退行的情景(铁路隧道)。此外,可以使用车载计算机实现实时性能。
translated by 谷歌翻译
我们在本文中介绍Raillomer,实现实时准确和鲁棒的内径测量和轨道车辆的测绘。 Raillomer从两个Lidars,IMU,火车车程和全球导航卫星系统(GNSS)接收器接收测量。作为前端,来自IMU / Royomer缩放组的估计动作De-Skews DeSoised Point云并为框架到框架激光轨道测量产生初始猜测。作为后端,配制了基于滑动窗口的因子图以共同优化多模态信息。另外,我们利用来自提取的轨道轨道和结构外观描述符的平面约束,以进一步改善对重复结构的系统鲁棒性。为了确保全局常见和更少的模糊映射结果,我们开发了一种两级映射方法,首先以本地刻度执行扫描到地图,然后利用GNSS信息来注册模块。该方法在聚集的数据集上广泛评估了多次范围内的数据集,并且表明Raillomer即使在大或退化的环境中也能提供排入量级定位精度。我们还将Raillomer集成到互动列车状态和铁路监控系统原型设计中,已经部署到实验货量交通铁路。
translated by 谷歌翻译
Accurate and smooth global navigation satellite system (GNSS) positioning for pedestrians in urban canyons is still a challenge due to the multipath effects and the non-light-of-sight (NLOS) receptions caused by the reflections from surrounding buildings. The recently developed factor graph optimization (FGO) based GNSS positioning method opened a new window for improving urban GNSS positioning by effectively exploiting the measurement redundancy from the historical information to resist the outlier measurements. Unfortunately, the FGO-based GNSS standalone positioning is still challenged in highly urbanized areas. As an extension of the previous FGO-based GNSS positioning method, this paper exploits the potential of the pedestrian dead reckoning (PDR) model in FGO to improve the GNSS standalone positioning performance in urban canyons. Specifically, the relative motion of the pedestrian is estimated based on the raw acceleration measurements from the onboard smartphone inertial measurement unit (IMU) via the PDR algorithm. Then the raw GNSS pseudorange, Doppler measurements, and relative motion from PDR are integrated using the FGO. Given the context of pedestrian navigation with a small acceleration most of the time, a novel soft motion model is proposed to smooth the states involved in the factor graph model. The effectiveness of the proposed method is verified step-by-step through two datasets collected in dense urban canyons of Hong Kong using smartphone-level GNSS receivers. The comparison between the conventional extended Kalman filter, several existing methods, and FGO-based integration is presented. The results reveal that the existing FGO-based GNSS standalone positioning is highly complementary to the PDR's relative motion estimation. Both improved positioning accuracy and trajectory smoothness are obtained with the help of the proposed method.
translated by 谷歌翻译
当前的融合定位系统主要基于过滤算法,例如卡尔曼过滤或粒子过滤。但是,实际应用方案的系统复杂性通常很高,例如行人惯性导航系统中的噪声建模或指纹匹配和定位算法中的环境噪声建模。为了解决这个问题,本文提出了一个基于深度学习的融合定位系统,并提出了一种转移学习策略,以改善具有不同分布的样本的神经网络模型的性能。结果表明,在整个地板方案中,融合网络的平均定位精度为0.506米。转移学习的实验结果表明,惯性导航定位步骤大小和不同行人的旋转角的估计精度可以平均提高53.3%,可以将不同设备的蓝牙定位精度提高33.4%,并且融合可以提高。可以提高31.6%。
translated by 谷歌翻译
A reliable pose estimator robust to environmental disturbances is desirable for mobile robots. To this end, inertial measurement units (IMUs) play an important role because they can perceive the full motion state of the vehicle independently. However, it suffers from accumulative error due to inherent noise and bias instability, especially for low-cost sensors. In our previous studies on Wheel-INS \cite{niu2021, wu2021}, we proposed to limit the error drift of the pure inertial navigation system (INS) by mounting an IMU to the wheel of the robot to take advantage of rotation modulation. However, it still drifted over a long period of time due to the lack of external correction signals. In this letter, we propose to exploit the environmental perception ability of Wheel-INS to achieve simultaneous localization and mapping (SLAM) with only one IMU. To be specific, we use the road bank angles (mirrored by the robot roll angles estimated by Wheel-INS) as terrain features to enable the loop closure with a Rao-Blackwellized particle filter. The road bank angle is sampled and stored according to the robot position in the grid maps maintained by the particles. The weights of the particles are updated according to the difference between the currently estimated roll sequence and the terrain map. Field experiments suggest the feasibility of the idea to perform SLAM in Wheel-INS using the robot roll angle estimates. In addition, the positioning accuracy is improved significantly (more than 30\%) over Wheel-INS. Source code of our implementation is publicly available (https://github.com/i2Nav-WHU/Wheel-SLAM).
translated by 谷歌翻译
滑动检测对于在外星人表面驾驶的流浪者的安全性和效率至关重要。当前的行星流动站滑移检测系统依赖于视觉感知,假设可以在环境中获得足够的视觉特征。然而,基于视觉的方法容易受到感知降解的行星环境,具有主要低地形特征,例如岩石岩,冰川地形,盐散发物以及较差的照明条件,例如黑暗的洞穴和永久阴影区域。仅依靠视觉传感器进行滑动检测也需要额外的计算功率,并降低了流动站的遍历速率。本文回答了如何检测行星漫游者的车轮滑移而不取决于视觉感知的问题。在这方面,我们提出了一个滑动检测系统,该系统从本体感受的本地化框架中获取信息,该框架能够提供数百米的可靠,连续和计算有效的状态估计。这是通过使用零速度更新,零角度更新和非独立限制作为惯性导航系统框架的伪测量更新来完成的。对所提出的方法进行了对实际硬件的评估,并在行星 - 分析环境中进行了现场测试。该方法仅使用IMU和车轮编码器就可以达到150 m左右的92%滑动检测精度。
translated by 谷歌翻译