Deep neural networks are able to learn powerful representations from large quantities of labeled input data, however they cannot always generalize well across changes in input distributions. Domain adaptation algorithms have been proposed to compensate for the degradation in performance due to domain shift. In this paper, we address the case when the target domain is unlabeled, requiring unsupervised adaptation. CORAL[1] is a "frustratingly easy" unsupervised domain adaptation method that aligns the second-order statistics of the source and target distributions with a linear transformation. Here, we extend CORAL to learn a nonlinear transformation that aligns correlations of layer activations in deep neural networks (Deep CORAL). Experiments on standard benchmark datasets show state-of-the-art performance.
translated by 谷歌翻译
Unlike human learning, machine learning often fails to handle changes between training (source) and test (target) input distributions. Such domain shifts, common in practical scenarios, severely damage the performance of conventional machine learning methods. Supervised domain adaptation methods have been proposed for the case when the target data have labels, including some that perform very well despite being "frustratingly easy" to implement. However, in practice, the target domain is often unlabeled, requiring unsupervised adaptation. We propose a simple, effective, and efficient method for unsupervised domain adaptation called CORrelation ALignment (CORAL). CORAL minimizes domain shift by aligning the second-order statistics of source and target distributions, without requiring any target labels. Even though it is extraordinarily simple-it can be implemented in four lines of Matlab code-CORAL performs remarkably well in extensive evaluations on standard benchmark datasets."Everything should be made as simple as possible, but not simpler."
translated by 谷歌翻译
Recent reports suggest that a generic supervised deep CNN model trained on a large-scale dataset reduces, but does not remove, dataset bias. Fine-tuning deep models in a new domain can require a significant amount of labeled data, which for many applications is simply not available. We propose a new CNN architecture to exploit unlabeled and sparsely labeled target domain data. Our approach simultaneously optimizes for domain invariance to facilitate domain transfer and uses a soft label distribution matching loss to transfer information between tasks. Our proposed adaptation method offers empirical performance which exceeds previously published results on two standard benchmark visual domain adaptation tasks, evaluated across supervised and semi-supervised adaptation settings.
translated by 谷歌翻译
This work provides a unified framework for addressing the problem of visual supervised domain adaptation and generalization with deep models. The main idea is to exploit the Siamese architecture to learn an embedding subspace that is discriminative, and where mapped visual domains are semantically aligned and yet maximally separated. The supervised setting becomes attractive especially when only few target data samples need to be labeled. In this scenario, alignment and separation of semantic probability distributions is difficult because of the lack of data. We found that by reverting to point-wise surrogates of distribution distances and similarities provides an effective solution. In addition, the approach has a high "speed" of adaptation, which requires an extremely low number of labeled target training samples, even one per category can be effective. The approach is extended to domain generalization. For both applications the experiments show very promising results.
translated by 谷歌翻译
在图像分类中,获得足够的标签通常昂贵且耗时。为了解决这个问题,域适应通常提供有吸引力的选择,给出了来自类似性质但不同域的大量标记数据。现有方法主要对准单个结构提取的表示的分布,并且表示可以仅包含部分信息,例如,仅包含部分饱和度,亮度和色调信息。在这一行中,我们提出了多代表性适应,这可以大大提高跨域图像分类的分类精度,并且特别旨在对准由名为Inception Adaption Adationation模块(IAM)提取的多个表示的分布。基于此,我们呈现多色自适应网络(MRAN)来通过多表示对准完成跨域图像分类任务,该任向性可以捕获来自不同方面的信息。此外,我们扩展了最大的平均差异(MMD)来计算适应损耗。我们的方法可以通过扩展具有IAM的大多数前进模型来轻松实现,并且网络可以通过反向传播有效地培训。在三个基准图像数据集上进行的实验证明了备的有效性。代码已在https://github.com/easezyc/deep-transfer -learning上获得。
translated by 谷歌翻译
The recent success of deep neural networks relies on massive amounts of labeled data. For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. In this paper, we propose a new approach to domain adaptation in deep networks that can jointly learn adaptive classifiers and transferable features from labeled data in the source domain and unlabeled data in the target domain. We relax a shared-classifier assumption made by previous methods and assume that the source classifier and target classifier differ by a residual function. We enable classifier adaptation by plugging several layers into deep network to explicitly learn the residual function with reference to the target classifier. We fuse features of multiple layers with tensor product and embed them into reproducing kernel Hilbert spaces to match distributions for feature adaptation. The adaptation can be achieved in most feed-forward models by extending them with new residual layers and loss functions, which can be trained efficiently via back-propagation. Empirical evidence shows that the new approach outperforms state of the art methods on standard domain adaptation benchmarks.
translated by 谷歌翻译
We propose a novel unsupervised domain adaptation framework based on domain-specific batch normalization in deep neural networks. We aim to adapt to both domains by specializing batch normalization layers in convolutional neural networks while allowing them to share all other model parameters, which is realized by a twostage algorithm. In the first stage, we estimate pseudolabels for the examples in the target domain using an external unsupervised domain adaptation algorithm-for example, MSTN [27] or CPUA [14]-integrating the proposed domain-specific batch normalization. The second stage learns the final models using a multi-task classification loss for the source and target domains. Note that the two domains have separate batch normalization layers in both stages. Our framework can be easily incorporated into the domain adaptation techniques based on deep neural networks with batch normalization layers. We also present that our approach can be extended to the problem with multiple source domains. The proposed algorithm is evaluated on multiple benchmark datasets and achieves the state-of-theart accuracy in the standard setting and the multi-source domain adaption scenario.
translated by 谷歌翻译
虽然无监督的域适应(UDA)算法,即,近年来只有来自源域的标记数据,大多数算法和理论结果侧重于单源无监督域适应(SUDA)。然而,在实际情况下,标记的数据通常可以从多个不同的源收集,并且它们可能不仅不同于目标域而且彼此不同。因此,来自多个源的域适配器不应以相同的方式进行建模。最近基于深度学习的多源无监督域适应(Muda)算法专注于通过在通用特征空间中的所有源极和目标域的分布对齐来提取所有域的公共域不变表示。但是,往往很难提取Muda中所有域的相同域不变表示。此外,这些方法匹配分布而不考虑类之间的域特定的决策边界。为了解决这些问题,我们提出了一个新的框架,具有两个对准阶段的Muda,它不仅将每对源和目标域的分布对齐,而且还通过利用域特定的分类器的输出对准决策边界。广泛的实验表明,我们的方法可以对图像分类的流行基准数据集实现显着的结果。
translated by 谷歌翻译
Deep networks have been successfully applied to learn transferable features for adapting models from a source domain to a different target domain.In this paper, we present joint adaptation networks (JAN), which learn a transfer network by aligning the joint distributions of multiple domain-specific layers across domains based on a joint maximum mean discrepancy (JMMD) criterion. Adversarial training strategy is adopted to maximize JMMD such that the distributions of the source and target domains are made more distinguishable. Learning can be performed by stochastic gradient descent with the gradients computed by back-propagation in linear-time. Experiments testify that our model yields state of the art results on standard datasets.
translated by 谷歌翻译
Recent studies reveal that a deep neural network can learn transferable features which generalize well to novel tasks for domain adaptation. However, as deep features eventually transition from general to specific along the network, the feature transferability drops significantly in higher layers with increasing domain discrepancy. Hence, it is important to formally reduce the dataset bias and enhance the transferability in task-specific layers. In this paper, we propose a new Deep Adaptation Network (DAN) architecture, which generalizes deep convolutional neural network to the domain adaptation scenario. In DAN, hidden representations of all task-specific layers are embedded in a reproducing kernel Hilbert space where the mean embeddings of different domain distributions can be explicitly matched. The domain discrepancy is further reduced using an optimal multi-kernel selection method for mean embedding matching. DAN can learn transferable features with statistical guarantees, and can scale linearly by unbiased estimate of kernel embedding. Extensive empirical evidence shows that the proposed architecture yields state-of-the-art image classification error rates on standard domain adaptation benchmarks.
translated by 谷歌翻译
Top-performing deep architectures are trained on massive amounts of labeled data. In the absence of labeled data for a certain task, domain adaptation often provides an attractive option given that labeled data of similar nature but from a different domain (e.g. synthetic images) are available. Here, we propose a new approach to domain adaptation in deep architectures that can be trained on large amount of labeled data from the source domain and large amount of unlabeled data from the target domain (no labeled targetdomain data is necessary).As the training progresses, the approach promotes the emergence of "deep" features that are (i) discriminative for the main learning task on the source domain and (ii) invariant with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a simple new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation.Overall, the approach can be implemented with little effort using any of the deep-learning packages. The method performs very well in a series of image classification experiments, achieving adaptation effect in the presence of big domain shifts and outperforming previous state-ofthe-art on Office datasets.
translated by 谷歌翻译
Domain adaptation aims at generalizing a high-performance learner on a target domain via utilizing the knowledge distilled from a source domain which has a different but related data distribution. One solution to domain adaptation is to learn domain invariant feature representations while the learned representations should also be discriminative in prediction. To learn such representations, domain adaptation frameworks usually include a domain invariant representation learning approach to measure and reduce the domain discrepancy, as well as a discriminator for classification. Inspired by Wasserstein GAN, in this paper we propose a novel approach to learn domain invariant feature representations, namely Wasserstein Distance Guided Representation Learning (WD-GRL). WDGRL utilizes a neural network, denoted by the domain critic, to estimate empirical Wasserstein distance between the source and target samples and optimizes the feature extractor network to minimize the estimated Wasserstein distance in an adversarial manner. The theoretical advantages of Wasserstein distance for domain adaptation lie in its gradient property and promising generalization bound. Empirical studies on common sentiment and image classification adaptation datasets demonstrate that our proposed WDGRL outperforms the state-of-the-art domain invariant representation learning approaches.
translated by 谷歌翻译
虽然在许多域内生成并提供了大量的未标记数据,但对视觉数据的自动理解的需求高于以往任何时候。大多数现有机器学习模型通常依赖于大量标记的训练数据来实现高性能。不幸的是,在现实世界的应用中,不能满足这种要求。标签的数量有限,手动注释数据昂贵且耗时。通常需要将知识从现有标记域传输到新域。但是,模型性能因域之间的差异(域移位或数据集偏差)而劣化。为了克服注释的负担,域适应(DA)旨在在将知识从一个域转移到另一个类似但不同的域中时减轻域移位问题。无监督的DA(UDA)处理标记的源域和未标记的目标域。 UDA的主要目标是减少标记的源数据和未标记的目标数据之间的域差异,并在培训期间在两个域中学习域不变的表示。在本文中,我们首先定义UDA问题。其次,我们从传统方法和基于深度学习的方法中概述了不同类别的UDA的最先进的方法。最后,我们收集常用的基准数据集和UDA最先进方法的报告结果对视觉识别问题。
translated by 谷歌翻译
The cost of large scale data collection and annotation often makes the application of machine learning algorithms to new tasks or datasets prohibitively expensive. One approach circumventing this cost is training models on synthetic data where annotations are provided automatically. Despite their appeal, such models often fail to generalize from synthetic to real images, necessitating domain adaptation algorithms to manipulate these models before they can be successfully applied. Existing approaches focus either on mapping representations from one domain to the other, or on learning to extract features that are invariant to the domain from which they were extracted. However, by focusing only on creating a mapping or shared representation between the two domains, they ignore the individual characteristics of each domain. We suggest that explicitly modeling what is unique to each domain can improve a model's ability to extract domain-invariant features. Inspired by work on private-shared component analysis, we explicitly learn to extract image representations that are partitioned into two subspaces: one component which is private to each domain and one which is shared across domains. Our model is trained not only to perform the task we care about in the source domain, but also to use the partitioned representation to reconstruct the images from both domains. Our novel architecture results in a model that outperforms the state-of-the-art on a range of unsupervised domain adaptation scenarios and additionally produces visualizations of the private and shared representations enabling interpretation of the domain adaptation process.
translated by 谷歌翻译
In recent years, deep neural networks have emerged as a dominant machine learning tool for a wide variety of application domains. However, training a deep neural network requires a large amount of labeled data, which is an expensive process in terms of time, labor and human expertise. Domain adaptation or transfer learning algorithms address this challenge by leveraging labeled data in a different, but related source domain, to develop a model for the target domain. Further, the explosive growth of digital data has posed a fundamental challenge concerning its storage and retrieval. Due to its storage and retrieval efficiency, recent years have witnessed a wide application of hashing in a variety of computer vision applications. In this paper, we first introduce a new dataset, Office-Home, to evaluate domain adaptation algorithms. The dataset contains images of a variety of everyday objects from multiple domains. We then propose a novel deep learning framework that can exploit labeled source data and unlabeled target data to learn informative hash codes, to accurately classify unseen target data. To the best of our knowledge, this is the first research effort to exploit the feature learning capabilities of deep neural networks to learn representative hash codes to address the domain adaptation problem. Our extensive empirical studies on multiple transfer tasks corroborate the usefulness of the framework in learning efficient hash codes which outperform existing competitive baselines for unsupervised domain adaptation.
translated by 谷歌翻译
Adversarial learning methods are a promising approach to training robust deep networks, and can generate complex samples across diverse domains. They also can improve recognition despite the presence of domain shift or dataset bias: several adversarial approaches to unsupervised domain adaptation have recently been introduced, which reduce the difference between the training and test domain distributions and thus improve generalization performance. Prior generative approaches show compelling visualizations, but are not optimal on discriminative tasks and can be limited to smaller shifts. Prior discriminative approaches could handle larger domain shifts, but imposed tied weights on the model and did not exploit a GAN-based loss. We first outline a novel generalized framework for adversarial adaptation, which subsumes recent state-of-the-art approaches as special cases, and we use this generalized view to better relate the prior approaches. We propose a previously unexplored instance of our general framework which combines discriminative modeling, untied weight sharing, and a GAN loss, which we call Adversarial Discriminative Domain Adaptation (ADDA). We show that ADDA is more effective yet considerably simpler than competing domain-adversarial methods, and demonstrate the promise of our approach by exceeding state-of-the-art unsupervised adaptation results on standard cross-domain digit classification tasks and a new more difficult cross-modality object classification task.
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从标记的源域传输到未标记的目标域。传统上,基于子空间的方法为此问题形成了一类重要的解决方案。尽管他们的数学优雅和易腐烂性,但这些方法通常被发现在产生具有复杂的现实世界数据集的领域不变的功能时无效。由于近期具有深度网络的代表学习的最新进展,本文重新访问了UDA的子空间对齐,提出了一种新的适应算法,始终如一地导致改进的泛化。与现有的基于对抗培训的DA方法相比,我们的方法隔离了特征学习和分配对准步骤,并利用主要辅助优化策略来有效地平衡域不契约的目标和模型保真度。在提供目标数据和计算要求的显着降低的同时,基于子空间的DA竞争性,有时甚至优于几种标准UDA基准测试的最先进的方法。此外,子空间对准导致本质上定期的模型,即使在具有挑战性的部分DA设置中,也表现出强大的泛化。最后,我们的UDA框架的设计本身支持对测试时间的新目标域的逐步适应,而无需从头开始重新检测模型。总之,由强大的特征学习者和有效的优化策略提供支持,我们将基于子空间的DA建立为可视识别的高效方法。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a well-labeled source domain to a different but related unlabeled target domain with identical label space. Currently, the main workhorse for solving UDA is domain alignment, which has proven successful. However, it is often difficult to find an appropriate source domain with identical label space. A more practical scenario is so-called partial domain adaptation (PDA) in which the source label set or space subsumes the target one. Unfortunately, in PDA, due to the existence of the irrelevant categories in the source domain, it is quite hard to obtain a perfect alignment, thus resulting in mode collapse and negative transfer. Although several efforts have been made by down-weighting the irrelevant source categories, the strategies used tend to be burdensome and risky since exactly which irrelevant categories are unknown. These challenges motivate us to find a relatively simpler alternative to solve PDA. To achieve this, we first provide a thorough theoretical analysis, which illustrates that the target risk is bounded by both model smoothness and between-domain discrepancy. Considering the difficulty of perfect alignment in solving PDA, we turn to focus on the model smoothness while discard the riskier domain alignment to enhance the adaptability of the model. Specifically, we instantiate the model smoothness as a quite simple intra-domain structure preserving (IDSP). To our best knowledge, this is the first naive attempt to address the PDA without domain alignment. Finally, our empirical results on multiple benchmark datasets demonstrate that IDSP is not only superior to the PDA SOTAs by a significant margin on some benchmarks (e.g., +10% on Cl->Rw and +8% on Ar->Rw ), but also complementary to domain alignment in the standard UDA
translated by 谷歌翻译
We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains.The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages.We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.
translated by 谷歌翻译
在本文中,我们提出了一种使用域鉴别特征模块的双模块网络架构,以鼓励域不变的特征模块学习更多域不变的功能。该建议的架构可以应用于任何利用域不变功能的任何模型,用于无监督域适应,以提高其提取域不变特征的能力。我们在作为代表性算法的神经网络(DANN)模型的区域 - 对抗训练进行实验。在培训过程中,我们为两个模块提供相同的输入,然后分别提取它们的特征分布和预测结果。我们提出了差异损失,以找到预测结果的差异和两个模块之间的特征分布。通过对抗训练来最大化其特征分布和最小化其预测结果的差异,鼓励两个模块分别学习更多域歧视和域不变特征。进行了广泛的比较评估,拟议的方法在大多数无监督的域适应任务中表现出最先进的。
translated by 谷歌翻译