我们研究具有流形结构的物理系统的langevin动力学$ \ MATHCAL {M} \ subset \ Mathbb {r}^p $,基于收集的样品点$ \ {\ Mathsf {x} _i \} _ {_i \} _ {i = 1} ^n \ subset \ mathcal {m} $探测未知歧管$ \ mathcal {m} $。通过扩散图,我们首先了解反应坐标$ \ {\ MATHSF {y} _i \} _ {i = 1}^n \ subset \ subset \ mathcal {n} $对应于$ \ {\ {\ mathsf {x} _i _i \ \ \ \ \ _i \ \ \ \ {x} } _ {i = 1}^n $,其中$ \ mathcal {n} $是$ \ mathcal {m} $的歧义diffeomorphic,并且与$ \ mathbb {r}^\ ell $ insometryally嵌入了$ \ ell $,带有$ \ ell \ ell \ ell \ ell \ el \ ell \ el \ el \ ell \ el \ LL P $。在$ \ Mathcal {n} $上的诱导Langevin动力学在反应坐标方面捕获了缓慢的时间尺度动力学,例如生化反应的构象变化。要构建$ \ Mathcal {n} $上的Langevin Dynamics的高效稳定近似,我们利用反应坐标$ \ MATHSF {y} n effertold $ \ Mathcal {n} $上的歧管$ \ Mathcal {n} $上的相应的fokker-planck方程$。我们为此Fokker-Planck方程提出了可实施的,无条件稳定的数据驱动的有限卷方程,该方程将自动合并$ \ Mathcal {n} $的歧管结构。此外,我们在$ \ Mathcal {n} $上提供了有限卷方案的加权$ L^2 $收敛分析。所提出的有限体积方案在$ \ {\ Mathsf {y} _i \} _ {i = 1}^n $上导致Markov链,并具有近似的过渡概率和最近的邻居点之间的跳跃速率。在无条件稳定的显式时间离散化之后,数据驱动的有限体积方案为$ \ Mathcal {n} $上的Langevin Dynamics提供了近似的Markov进程,并且近似的Markov进程享有详细的平衡,Ergodicity和其他良好的属性。
translated by 谷歌翻译
在非参数回归中,落在欧几里德空间的限制子集中是常见的。基于典型的内核的方法,不考虑收集观察的域的内在几何学可能产生次优效果。在本文中,我们专注于在高斯过程(GP)模型的背景下解决这个问题,提出了一种新的基于Graplacian的GPS(GL-GPS),该GPS(GL-GPS),该GPS(GL-GPS)学习尊重输入域几何的协方差。随着热核的难以计算地,我们使用Prop Laplacian(GL)的有限许多特征方来近似协方差。 GL由内核构成,仅取决于输入的欧几里德坐标。因此,我们可以从关于内核的完整知识中受益,以通过NYSTR \“{o} M型扩展来将协方差结构扩展到新到达的样本。我们为GL-GP方法提供了实质性的理论支持,并说明了性能提升各种应用。
translated by 谷歌翻译
我们提出了一种基于langevin扩散的算法,以在球体的产物歧管上进行非凸优化和采样。在对数Sobolev不平等的情况下,我们根据Kullback-Leibler Divergence建立了有限的迭代迭代收敛到Gibbs分布的保证。我们表明,有了适当的温度选择,可以保证,次级最小值的次数差距很小,概率很高。作为一种应用,我们考虑了使用对角线约束解决半决赛程序(SDP)的burer- monteiro方法,并分析提出的langevin算法以优化非凸目标。特别是,我们为Burer建立了对数Sobolev的不平等现象 - 当没有虚假的局部最小值时,但在鞍点下,蒙蒂罗问题。结合结果,我们为SDP和最大切割问题提供了全局最佳保证。更确切地说,我们证明了Langevin算法在$ \ widetilde {\ omega}(\ epsilon^{ - 5})$ tererations $ tererations $ \ widetilde {\ omega}(\ omega}中,具有很高的概率。
translated by 谷歌翻译
当图形亲和力矩阵是由$ n $随机样品构建的,在$ d $ d $维歧管上构建图形亲和力矩阵时,这项工作研究图形拉普拉斯元素与拉普拉斯 - 贝特拉米操作员的光谱收敛。通过分析DIRICHLET形成融合并通过歧管加热核卷积构建候选本本函数,我们证明,使用高斯内核,可以设置核band band band band parame $ \ epsilon \ sim \ sim(\ log n/ n/ n)^{1/(D /2+2)} $使得特征值收敛率为$ n^{ - 1/(d/2+2)} $,并且2-norm中的特征向量收敛率$ n^{ - 1/(d+) 4)} $;当$ \ epsilon \ sim(\ log n/n)^{1/(d/2+3)} $时,eigenValue和eigenVector速率均为$ n^{ - 1/(d/2+3)} $。这些费率最高为$ \ log n $因素,并被证明是有限的许多低洼特征值。当数据在歧管上均匀采样以及密度校正的图laplacian(在两个边的度矩阵中归一化)时,结果适用于非归一化和随机漫步图拉普拉斯laplacians laplacians laplacians以及密度校正的图laplacian(其中两侧的级别矩阵)采样数据。作为中间结果,我们证明了密度校正图拉普拉斯的新点和差异形式的收敛速率。提供数值结果以验证理论。
translated by 谷歌翻译
内元化图亲和力矩阵的双性化归一化为基于图的数据分析中的图形laplacian方法提供了一种替代归一化方案,并且可以通过sinkhorn-knopp(SK)迭代在实践中有效地计算出来。本文证明了双性化标准化图拉普拉斯(Laplacian)与laplacian的融合,当$ n $数据点为i.i.d.从嵌入可能高维空间中的一般$ d $维歧管中取样。在$ n \ to \ infty $和内核带宽$ \ epsilon \ to 0 $的某些联合限制下,图Laplacian操作员的点融合率(2-Norm)被证明为$ O(N^{n^{ -1/(d/2+3)})$在有限的大$ n $上,到log racture,在$ \ epsilon \ sim n^{ - 1/(d/2+3)} $时实现。当歧管数据被异常噪声损坏时,我们从理论上证明了图形laplacian点的一致性,该图与清洁歧管数据的速率匹配到与噪声矢量相互内部产物的界限成比例的附加错误项。我们的分析表明,在本文中考虑的设置下,不是精确的双性化归一化,而是大约将达到相同的一致性率。在分析的激励下,我们提出了一个近似且受约束的矩阵缩放问题,可以通过早期终止的SK迭代来解决,并适用于模拟的歧管数据既干净又具有离群的噪声。数值实验支持我们的理论结果,并显示了双形式归一化图拉普拉斯对异常噪声的鲁棒性。
translated by 谷歌翻译
In this work we study statistical properties of graph-based algorithms for multi-manifold clustering (MMC). In MMC the goal is to retrieve the multi-manifold structure underlying a given Euclidean data set when this one is assumed to be obtained by sampling a distribution on a union of manifolds $\mathcal{M} = \mathcal{M}_1 \cup\dots \cup \mathcal{M}_N$ that may intersect with each other and that may have different dimensions. We investigate sufficient conditions that similarity graphs on data sets must satisfy in order for their corresponding graph Laplacians to capture the right geometric information to solve the MMC problem. Precisely, we provide high probability error bounds for the spectral approximation of a tensorized Laplacian on $\mathcal{M}$ with a suitable graph Laplacian built from the observations; the recovered tensorized Laplacian contains all geometric information of all the individual underlying manifolds. We provide an example of a family of similarity graphs, which we call annular proximity graphs with angle constraints, satisfying these sufficient conditions. We contrast our family of graphs with other constructions in the literature based on the alignment of tangent planes. Extensive numerical experiments expand the insights that our theory provides on the MMC problem.
translated by 谷歌翻译
我们介绍了一种算法,用于计算采样歧管的测量测量算法,其依赖于对采样数据的植物嵌入的曲线图的模拟。我们的方法利用经典的结果在半导体分析和量子古典对应中,并形成用于学习数据集的歧管的技术的基础,随后用于高维数据集的非线性维度降低。我们以基于CoVID-19移动数据的聚类演示,从模型歧管中采样数据采样的数据,并通过集群演示来说明新的算法。最后,我们的方法揭示了数据采样和量化提供的离散化之间有趣的连接。
translated by 谷歌翻译
本文研究了基于Laplacian Eigenmaps(Le)的基于Laplacian EIGENMAPS(PCR-LE)的主要成分回归的统计性质,这是基于Laplacian Eigenmaps(Le)的非参数回归的方法。 PCR-LE通过投影观察到的响应的向量$ {\ bf y} =(y_1,\ ldots,y_n)$ to to changbood图表拉普拉斯的某些特征向量跨越的子空间。我们表明PCR-Le通过SoboLev空格实现了随机设计回归的最小收敛速率。在设计密度$ P $的足够平滑条件下,PCR-le达到估计的最佳速率(其中已知平方$ l ^ 2 $ norm的最佳速率为$ n ^ { - 2s /(2s + d) )} $)和健美的测试($ n ^ { - 4s /(4s + d)$)。我们还表明PCR-LE是\ EMPH {歧管Adaptive}:即,我们考虑在小型内在维度$ M $的歧管上支持设计的情况,并为PCR-LE提供更快的界限Minimax估计($ n ^ { - 2s /(2s + m)$)和测试($ n ^ { - 4s /(4s + m)$)收敛率。有趣的是,这些利率几乎总是比图形拉普拉斯特征向量的已知收敛率更快;换句话说,对于这个问题的回归估计的特征似乎更容易,统计上讲,而不是估计特征本身。我们通过经验证据支持这些理论结果。
translated by 谷歌翻译
我们系统地{研究基于内核的图形laplacian(gl)的光谱},该图在非null设置中由高维和嘈杂的随机点云构成,其中点云是从低维几何对象(如歧管)中采样的,被高维噪音破坏。我们量化了信号和噪声在信号噪声比(SNR)的不同状态下如何相互作用,并报告GL的{所产生的特殊光谱行为}。此外,我们还探索了GL频谱上的内核带宽选择,而SNR的不同状态则导致带宽的自适应选择,这与实际数据中的共同实践相吻合。该结果为数据集嘈杂时的从业人员提供了理论支持。
translated by 谷歌翻译
Experimental sciences have come to depend heavily on our ability to organize, interpret and analyze high-dimensional datasets produced from observations of a large number of variables governed by natural processes. Natural laws, conservation principles, and dynamical structure introduce intricate inter-dependencies among these observed variables, which in turn yield geometric structure, with fewer degrees of freedom, on the dataset. We show how fine-scale features of this structure in data can be extracted from \emph{discrete} approximations to quantum mechanical processes given by data-driven graph Laplacians and localized wavepackets. This data-driven quantization procedure leads to a novel, yet natural uncertainty principle for data analysis induced by limited data. We illustrate the new approach with algorithms and several applications to real-world data, including the learning of patterns and anomalies in social distancing and mobility behavior during the COVID-19 pandemic.
translated by 谷歌翻译
我们提供了通过局部主成分分析估计切线空间和(光滑,紧凑)欧几里德子多元化的固定空间和固有尺寸所需的采样点数量的明确界限。我们的方法直接估计本地协方差矩阵,其同时允许估计切线空间和歧管的固有尺寸。关键争论涉及矩阵浓度不等式,是用于平坦化歧管的Wasserstein,以及关于Wassersein距离的协方差矩阵的Lipschitz关系。
translated by 谷歌翻译
本文提出了一个无网格的计算框架和机器学习理论,用于在未知的歧管上求解椭圆形PDE,并根据扩散地图(DM)和深度学习确定点云。 PDE求解器是作为监督的学习任务制定的,以解决最小二乘回归问题,该问题施加了近似PDE的代数方程(如果适用)。该代数方程涉及通过DM渐近扩展获得的图形拉平型矩阵,该基质是二阶椭圆差差算子的一致估计器。最终的数值方法是解决受神经网络假设空间解决方案的高度非凸经验最小化问题。在体积良好的椭圆PDE设置中,当假设空间由具有无限宽度或深度的神经网络组成时,我们表明,经验损失函数的全球最小化器是大型训练数据极限的一致解决方案。当假设空间是一个两层神经网络时,我们表明,对于足够大的宽度,梯度下降可以识别经验损失函数的全局最小化器。支持数值示例证明了解决方案的收敛性,范围从具有低和高共限度的简单歧管到具有和没有边界的粗糙表面。我们还表明,所提出的NN求解器可以在具有概括性误差的新数据点上稳健地概括PDE解决方案,这些误差几乎与训练错误相同,从而取代了基于Nystrom的插值方法。
translated by 谷歌翻译
了解随机梯度下降(SGD)的隐式偏见是深度学习的关键挑战之一,尤其是对于过度透明的模型,损失功能的局部最小化$ l $可以形成多种多样的模型。从直觉上讲,SGD $ \ eta $的学习率很小,SGD跟踪梯度下降(GD),直到它接近这种歧管为止,梯度噪声阻止了进一步的收敛。在这样的政权中,Blanc等人。 (2020)证明,带有标签噪声的SGD局部降低了常规术语,损失的清晰度,$ \ mathrm {tr} [\ nabla^2 l] $。当前的论文通过调整Katzenberger(1991)的想法提供了一个总体框架。它原则上允许使用随机微分方程(SDE)描述参数的限制动力学的SGD围绕此歧管的正规化效应(即“隐式偏见”)的正则化效应,这是由损失共同确定的功能和噪声协方差。这产生了一些新的结果:(1)与Blanc等人的局部分析相比,对$ \ eta^{ - 2} $ steps有效的隐性偏差进行了全局分析。 (2020)仅适用于$ \ eta^{ - 1.6} $ steps和(2)允许任意噪声协方差。作为一个应用程序,我们以任意大的初始化显示,标签噪声SGD始终可以逃脱内核制度,并且仅需要$ o(\ kappa \ ln d)$样本用于学习$ \ kappa $ -sparse $ -sparse yroverparame parametrized linearized Linear Modal in $ \ Mathbb {r}^d $(Woodworth等,2020),而GD在内核制度中初始化的GD需要$ \ omega(d)$样本。该上限是最小值的最佳,并改善了先前的$ \ tilde {o}(\ kappa^2)$上限(Haochen等,2020)。
translated by 谷歌翻译
我们调查识别来自域中的采样点的域的边界。我们向边界引入正常矢量的新估计,指向边界的距离,以及对边界条内的点位于边界的测试。可以有效地计算估算器,并且比文献中存在的估计更准确。我们为估算者提供严格的错误估计。此外,我们使用检测到的边界点来解决Point云上PDE的边值问题。我们在点云上证明了LAPLACH和EIKONG方程的错误估计。最后,我们提供了一系列数值实验,说明了我们的边界估计器,在点云上的PDE应用程序的性能,以及在图像数据集上测试。
translated by 谷歌翻译
散射变换是一种基于小波的多层转换,最初是作为卷积神经网络(CNN)的模型引入的,它在我们对这些网络稳定性和不变性属性的理解中发挥了基础作用。随后,人们普遍兴趣将CNN的成功扩展到具有非欧盟结构的数据集,例如图形和歧管,从而导致了几何深度学习的新兴领域。为了提高我们对这个新领域中使用的体系结构的理解,几篇论文提出了对非欧几里得数据结构(如无方向的图形和紧凑的Riemannian歧管)的散射转换的概括。在本文中,我们介绍了一个通用的统一模型,用于测量空间上的几何散射。我们提出的框架包括以前的几何散射作品作为特殊情况,但也适用于更通用的设置,例如有向图,签名图和带边界的歧管。我们提出了一个新标准,该标准可以识别哪些有用表示应该不变的组,并表明该标准足以确保散射变换具有理想的稳定性和不变性属性。此外,我们考虑从随机采样未知歧管获得的有限度量空间。我们提出了两种构造数据驱动图的方法,在该图上相关的图形散射转换近似于基础歧管上的散射变换。此外,我们使用基于扩散图的方法来证明这些近似值之一的收敛速率的定量估计值,因为样品点的数量趋向于无穷大。最后,我们在球形图像,有向图和高维单细胞数据上展示了方法的实用性。
translated by 谷歌翻译
在此备忘录中,我们开发了一般框架,它允许同时研究$ \ MathBB R ^ D $和惠特尼在$ \ Mathbb r的离散和非离散子集附近的insoctry扩展问题附近的标签和未标记的近对准数据问题。^ d $与某些几何形状。此外,我们调查了与集群,维度减少,流形学习,视觉以及最小的能量分区,差异和最小最大优化的相关工作。给出了谐波分析,计算机视觉,歧管学习和与我们工作的信号处理中的众多开放问题。本发明内容中的一部分工作基于纸张中查尔斯Fefferman的联合研究[48],[49],[50],[51]。
translated by 谷歌翻译
Consider $n$ points independently sampled from a density $p$ of class $\mathcal{C}^2$ on a smooth compact $d$-dimensional sub-manifold $\mathcal{M}$ of $\mathbb{R}^m$, and consider the generator of a random walk visiting these points according to a transition kernel $K$. We study the almost sure uniform convergence of this operator to the diffusive Laplace-Beltrami operator when $n$ tends to infinity. This work extends known results of the past 15 years. In particular, our result does not require the kernel $K$ to be continuous, which covers the cases of walks exploring $k$NN-random and geometric graphs, and convergence rates are given. The distance between the random walk generator and the limiting operator is separated into several terms: a statistical term, related to the law of large numbers, is treated with concentration tools and an approximation term that we control with tools from differential geometry. The convergence of $k$NN Laplacians is detailed.
translated by 谷歌翻译
Riemannian geometry provides powerful tools to explore the latent space of generative models while preserving the inherent structure of the data manifold. Lengths, energies and volume measures can be derived from a pullback metric, defined through the immersion that maps the latent space to the data space. With this in mind, most generative models are stochastic, and so is the pullback metric. Manipulating stochastic objects is strenuous in practice. In order to perform operations such as interpolations, or measuring the distance between data points, we need a deterministic approximation of the pullback metric. In this work, we are defining a new metric as the expected length derived from the stochastic pullback metric. We show this metric is Finslerian, and we compare it with the expected pullback metric. In high dimensions, we show that the metrics converge to each other at a rate of $\mathcal{O}\left(\frac{1}{D}\right)$.
translated by 谷歌翻译
我们基于拉普拉斯 - 贝特拉米操作员的图形laplacian估计值介绍了紧凑型riemannian歧管M中距离的估计量。我们在非歧管距离上的估计量比的比率上限,或者在非交通性几何形状中的歧管距离的近似值(参见[Connes and Suijelekom,2020]),就光谱误差而言))。图形拉普拉斯(Laplacian)的估计值和隐含的歧管几何特性。因此,我们为从M和图拉普拉奇人的严格正密度等分的样品获得估计器的一致性结果,这些样品从M和图形laplacians上的频谱从适当的意义上汇聚到Laplace-Beltrami操作员。估计器类似于其收敛性能,它源自kontorovic双重重新印度的特殊情况,称为Connes的距离公式。
translated by 谷歌翻译
计算科学和统计推断中的许多应用都需要计算有关具有未知归一化常数的复杂高维分布以及这些常数的估计。在这里,我们开发了一种基于从简单的基本分布生成样品,沿着速度场生成的流量运输的方法,并沿这些流程线执行平均值。这种非平衡重要性采样(NEIS)策略是直接实施的,可用于具有任意目标分布的计算。在理论方面,我们讨论了如何将速度场定制到目标,并建立所提出的估计器是一个完美的估计器,具有零变化。我们还通过将基本分布映射到目标上,通过传输图绘制了NEIS和方法之间的连接。在计算方面,我们展示了如何使用深度学习来代表神经网络,并将其训练为零方差最佳。这些结果在高维示例上进行了数值说明,我们表明训练速度场可以将NEIS估计量的方差降低至6个数量级,而不是Vanilla估计量。我们还表明,NEIS在这些示例上的表现要比NEAL的退火重要性采样(AIS)更好。
translated by 谷歌翻译