多个旅行推销员问题(MTSP)是众多现实世界应用的众所周知的NP硬性问题。特别是,这项工作涉及Minmax MTSP,其目的是最大程度地减少所有代理商之间的最大巡回演出长度。许多机器人部署需要经常重新计算潜在的大型MTSP实例,从而使计算时间和解决方案质量的自然权衡非常重要。但是,由于其计算复杂性,精确和启发式算法随着城市数量的增加而效率低下。在最新的深入学习学习(DRL)方面的鼓励下,这项工作将MTSP作为一项合作任务,并引入了Dan,Dan是一种分散的基于注意力的神经方法,旨在解决这一关键权衡。在丹中,代理商通过预测彼此的未来决策来学习完全分散的政策,以合作构建巡回演出。我们的模型依赖于变压器体系结构,并使用具有参数共享的多代理RL进行了训练,从而为代理和城市的数量提供了自然的可扩展性。我们对小型至大规模MTSP实例的实验结果($ 50至$ 1000 $的城市,$ 5 $至20美元的代理商)表明,Dan能够匹配或超越最先进的求解器,同时保持计划时间较低。特别是,在相同的计算时间预算的情况下,DAN在大规模实例(超过100个城市,超过5个代理商)上优于所有基于常规和DRL的基线,并展示了增强的代理协作。一段视频解释了我们的方法并介绍了我们的结果,请参见\ url {https://youtu.be/xi3clsdslvs}。
translated by 谷歌翻译
广泛研究和使用旅行推销员问题等图形问题,如旅行推销员问题,或发现最小的施泰纳树在数据工程和计算机科学中使用。通常,在现实世界应用中,图表的特征往往会随着时间的推移而变化,因此,找到问题的解决方案变得具有挑战性。许多图表问题的动态版本是运输,电信和社交网络中普遍世界问题的关键。近年来,利用深度学习技术来寻找NP-Hard图组合问题的启发式解决方案,因为这些学习的启发式可以有效地找到近最佳解决方案。但是,大多数现有的学习启发式方法都关注静态图问题。动态性质使NP-Hard图表问题更具挑战性,并且现有方法无法找到合理的解决方案。在本文中,我们提出了一种名为Cabl时间关注的新型建筑,并利用加固学习(GTA-RL)来学习基于图形的动态组合优化问题的启发式解决方案。 GTA-RL架构包括能够嵌入组合问题实例的时间特征的编码器和能够动态地关注嵌入功能的解码器,以找到给定组合问题实例的解决方案。然后,我们将架构扩展到学习HeuRistics的组合优化问题的实时版本,其中问题的所有输入特征是未知的,而是实时学习。我们针对几种最先进的基于学习的算法和最佳求解器的实验结果表明,我们的方法在动态和效率方面,在有效性和最佳求解器方面优于基于最先进的学习方法。实时图组合优化。
translated by 谷歌翻译
钢筋学习最近在许多组合优化问题中显示了学习质量解决方案的承诺。特别地,基于注意的编码器 - 解码器模型在各种路由问题上显示出高效率,包括旅行推销员问题(TSP)。不幸的是,它们对具有无人机(TSP-D)的TSP表现不佳,需要在协调中路由车辆的异构队列 - 卡车和无人机。在TSP-D中,这两个车辆正在串联移动,并且可能需要在用于其他车辆的节点上等待加入。不那么关注的基于关注的解码器无法在车辆之间进行这种协调。我们提出了一种注意力编码器-LSTM解码器混合模型,其中解码器的隐藏状态可以代表所做的动作序列。我们经验证明,这种混合模型可提高基于纯粹的关注的模型,用于解决方案质量和计算效率。我们对MIN-MAX电容车辆路由问题(MMCVRP)的实验还确认混合模型更适合于多车辆的协调路由而不是基于注意的模型。
translated by 谷歌翻译
In many domains such as transportation and logistics, search and rescue, or cooperative surveillance, tasks are pending to be allocated with the consideration of possible execution uncertainties. Existing task coordination algorithms either ignore the stochastic process or suffer from the computational intensity. Taking advantage of the weakly coupled feature of the problem and the opportunity for coordination in advance, we propose a decentralized auction-based coordination strategy using a newly formulated score function which is generated by forming the problem into task-constrained Markov decision processes (MDPs). The proposed method guarantees convergence and at least 50% optimality in the premise of a submodular reward function. Furthermore, for the implementation on large-scale applications, an approximate variant of the proposed method, namely Deep Auction, is also suggested with the use of neural networks, which is evasive of the troublesome for constructing MDPs. Inspired by the well-known actor-critic architecture, two Transformers are used to map observations to action probabilities and cumulative rewards respectively. Finally, we demonstrate the performance of the two proposed approaches in the context of drone deliveries, where the stochastic planning for the drone league is cast into a stochastic price-collecting Vehicle Routing Problem (VRP) with time windows. Simulation results are compared with state-of-the-art methods in terms of solution quality, planning efficiency and scalability.
translated by 谷歌翻译
我们将解决多车程路由问题解释为马尔可夫的团队游戏,其成本部分可观察到。为了为一组给定的客户提供服务,游戏代理(车辆)的共同目标是确定最佳的总成本的团队最佳代理路线。因此,每个代理商仅观察自己的成本。我们的多机构增强学习方法,即所谓的多机神经重写者,建立在单格神经重写者的基础上,以通过迭代重写解决方案解决该问题。并行代理操作执行和部分可观察性需要游戏的新重写规则。我们建议在系统中引入一个所谓的池,该池是未访问的节点的收集点。它使代理商能够同时采取行动并以无冲突的方式交换节点。我们仅在学习过程中仅分享对代理的成本的有限披露。在推断期间,每个代理人都完全基于其自身的成本来表现出来。小问题大小的首先经验结果表明,我们达到的性能接近所采用的Or-Tools基准,该基准在完美的成本信息设置中运行。
translated by 谷歌翻译
我们提出了一种基于新颖的增强学习算法,用于仓库环境中的多机器人任务分配问题。我们将其作为马尔可夫的决策过程提出,并通过一种新颖的深度多代理强化学习方法(称为RTAW)解决了启发性的政策体系结构。因此,我们提出的策略网络使用独立于机器人/任务数量的全局嵌入。我们利用近端政策优化算法进行培训,并使用精心设计的奖励来获得融合的政策。融合的政策确保了不同机器人之间的合作,以最大程度地减少总旅行延迟(TTD),这最终改善了Makepan的大型任务列表。在我们的广泛实验中,我们将RTAW算法的性能与最先进的方法进行了比较,例如近视皮卡最小化(Greedy)和基于遗憾的基于不同导航方案的基线。在TTD中,我们在TTD中显示了最高14%(25-1000秒)的情况,这些方案具有数百或数千个任务,用于不同挑战性的仓库布局和任务生成方案。我们还通过在模拟中显示高达$ 1000 $的机器人的性能来证明我们的方法的可扩展性。
translated by 谷歌翻译
Coflow是最近提出的网络抽象,以帮助提高数据并行计算作业的通信性能。在多阶段作业中,每个作业包括多个Coflows,由定向的非循环图(DAG)表示。有效地调度Coflows对于提高数据中心中的数据并行计算性能至关重要。与手动调度启发式相比,现有的工作Deepweave [1]利用强化学习(RL)框架自动生成高效的CoFlow调度策略。它采用图形神经网络(GNN)来编码一组嵌入向量中的作业信息,并将包含整个作业信息的平面嵌入载体馈送到策略网络。然而,这种方法的可扩展性差,因为它无法应对由任意尺寸和形状的DAG表示的作业,这需要大型策略网络来处理难以训练的高维嵌入载体。在本文中,我们首先利用了一条定向的无循环图神经网络(DAGNN)来处理输入并提出一种新型流水线-DAGNN,其可以有效地加速DAGNN的特征提取过程。接下来,我们馈送由可调度的Coflows组成的嵌入序列,而不是将所有Coflows的平面嵌入到策略网络上,并输出优先级序列,这使得策略网络的大小仅取决于特征的维度而不是产品的维度作业的DAG中的节点数量和节点数量,提高优先级调度策略的准确性,我们将自我注意机制纳入深度RL模型,以捕获嵌入序列不同部分之间的交互,以使输出优先级进行输出优先级分数相关。基于此模型,我们开发了一种用于在线多级作业的Coflow调度算法。
translated by 谷歌翻译
The design of good heuristics or approximation algorithms for NP-hard combinatorial optimization problems often requires significant specialized knowledge and trial-and-error. Can we automate this challenging, tedious process, and learn the algorithms instead? In many real-world applications, it is typically the case that the same optimization problem is solved again and again on a regular basis, maintaining the same problem structure but differing in the data. This provides an opportunity for learning heuristic algorithms that exploit the structure of such recurring problems. In this paper, we propose a unique combination of reinforcement learning and graph embedding to address this challenge. The learned greedy policy behaves like a meta-algorithm that incrementally constructs a solution, and the action is determined by the output of a graph embedding network capturing the current state of the solution. We show that our framework can be applied to a diverse range of optimization problems over graphs, and learns effective algorithms for the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.
translated by 谷歌翻译
我们开发了一个多功能辅助救援学习(MARL)方法,以了解目标跟踪的可扩展控制策略。我们的方法可以处理任意数量的追求者和目标;我们显示出现的任务,该任务包括高达1000追踪跟踪1000个目标。我们使用分散的部分可观察的马尔可夫决策过程框架来模拟追求者作为接受偏见观察(范围和轴承)的代理,了解使用固定的未知政策的目标。注意机制用于参数化代理的价值函数;这种机制允许我们处理任意数量的目标。熵 - 正规的脱助政策RL方法用于培训随机政策,我们讨论如何在追求者之间实现对冲行为,尽管有完全分散的控制执行,但仍然导致合作较弱的合作形式。我们进一步开发了一个掩蔽启发式,允许训练较少的问题,少量追求目标和在更大的问题上执行。进行彻底的仿真实验,消融研究和对现有技术算法的比较,以研究对不同数量的代理和目标性能的方法和鲁棒性的可扩展性。
translated by 谷歌翻译
回溯搜索算法通常用于解决约束满足问题(CSP)。回溯搜索的效率在很大程度上取决于可变排序启发式。目前,最常用的启发式是根据专家知识进行手工制作的。在本文中,我们提出了一种基于深度的加强学习方法,可以自动发现新的变量订购启发式,更好地适用于给定类CSP实例。我们显示,直接优化搜索成本很难用于自动启动,并建议优化在搜索树中到达叶节点的预期成本。为了捕获变量和约束之间的复杂关系,我们设计基于图形神经网络的表示方案,可以处理具有不同大小和约束的CSP实例。随机CSP实例上的实验结果表明,学习的政策在最小化搜索树大小的方面优于古典手工制作的启发式,并且可以有效地推广到比训练中使用的实例。
translated by 谷歌翻译
深度强化学习(DRL)赋予了各种人工智能领域,包括模式识别,机器人技术,推荐系统和游戏。同样,图神经网络(GNN)也证明了它们在图形结构数据的监督学习方面的出色表现。最近,GNN与DRL用于图形结构环境的融合引起了很多关注。本文对这些混合动力作品进行了全面评论。这些作品可以分为两类:(1)算法增强,其中DRL和GNN相互补充以获得更好的实用性; (2)特定于应用程序的增强,其中DRL和GNN相互支持。这种融合有效地解决了工程和生命科学方面的各种复杂问题。基于审查,我们进一步分析了融合这两个领域的适用性和好处,尤其是在提高通用性和降低计算复杂性方面。最后,集成DRL和GNN的关键挑战以及潜在的未来研究方向被突出显示,这将引起更广泛的机器学习社区的关注。
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
最近的研究表明,神经组合优化(NCO)在许多组合优化问题(如路由)中具有优于传统算法的优点,但是对于涉及相互条件的动作空间的包装,诸如打包的更加复杂的优化任务的效率较低。在本文中,我们提出了一种经常性的条件查询学习(RCQL)方法来解决2D和3D包装问题。我们首先通过经常性编码器嵌入状态,然后采用先前操作的条件查询注意。条件查询机制填充了学习步骤之间的信息差距,将问题塑造为Markov决策过程。从复发中受益,单个RCQL模型能够处理不同尺寸的包装问题。实验结果表明,RCQL可以有效地学习用于离线和在线条带包装问题(SPP)的强烈启发式,优于空间利用率范围广泛的基线。 RCQL与最先进的方法相比,在离线2D 40盒案例中将平均箱间隙比率降低1.83%,3.84%。同时,我们的方法还实现了5.64%的空间利用率,对于1000件物品的空间利用率比现有技术更高。
translated by 谷歌翻译
Transformer, originally devised for natural language processing, has also attested significant success in computer vision. Thanks to its super expressive power, researchers are investigating ways to deploy transformers to reinforcement learning (RL) and the transformer-based models have manifested their potential in representative RL benchmarks. In this paper, we collect and dissect recent advances on transforming RL by transformer (transformer-based RL or TRL), in order to explore its development trajectory and future trend. We group existing developments in two categories: architecture enhancement and trajectory optimization, and examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving. For architecture enhancement, these methods consider how to apply the powerful transformer structure to RL problems under the traditional RL framework, which model agents and environments much more precisely than deep RL methods, but they are still limited by the inherent defects of traditional RL algorithms, such as bootstrapping and "deadly triad". For trajectory optimization, these methods treat RL problems as sequence modeling and train a joint state-action model over entire trajectories under the behavior cloning framework, which are able to extract policies from static datasets and fully use the long-sequence modeling capability of the transformer. Given these advancements, extensions and challenges in TRL are reviewed and proposals about future direction are discussed. We hope that this survey can provide a detailed introduction to TRL and motivate future research in this rapidly developing field.
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
在合作多智能体增强学习(Marl)中的代理商的创造和破坏是一个批判性的研究领域。当前的Marl算法通常认为,在整个实验中,组内的代理数量仍然是固定的。但是,在许多实际问题中,代理人可以在队友之前终止。这次早期终止问题呈现出挑战:终止的代理人必须从本集团的成功或失败中学习,这是超出其自身存在的成败。我们指代薪资奖励的传播价值作为遣返代理商作为追索的奖励作为追索权。当前的MARL方法通过将这些药剂放在吸收状态下,直到整组试剂达到终止条件,通过将这些药剂置于终止状态来处理该问题。虽然吸收状态使现有的算法和API能够在没有修改的情况下处理终止的代理,但存在实际培训效率和资源使用问题。在这项工作中,我们首先表明样本复杂性随着系统监督学习任务中的吸收状态的数量而增加,同时对变量尺寸输入更加强大。然后,我们为现有的最先进的MARL算法提出了一种新颖的架构,它使用注意而不是具有吸收状态的完全连接的层。最后,我们展示了这一新颖架构在剧集中创建或销毁的任务中的标准架构显着优于标准架构以及标准的多代理协调任务。
translated by 谷歌翻译
多目标定向运动问题(MO-OPS)是经典的多目标路由问题,在过去几十年中,人们一直受到很多关注。这项研究旨在通过问题分解框架解决MO-OPS,即MO-OP分解为多目标背包问题(MOKP)和旅行推销员问题(TSP)。然后,MOKP和TSP分别通过多目标进化算法(MOEA)和深钢筋学习(DRL)方法来解决。虽然MOEA模块用于选择城市,但DRL模块用于计划这些城市的哈密顿路径。这两个模块的迭代使用将人口驱动到Mo-ops的帕累托前沿。在各种类型的MO-OP实例上,将提出方法的有效性与NSGA-II和NSGA-III进行了比较。实验结果表明,我们的方法几乎在所有测试实例上表现出最佳性能,并且表现出强大的概括能力。
translated by 谷歌翻译
我们为仓库环境中的移动机器人提供基于新颖的强化学习(RL)任务分配和分散的导航算法。我们的方法是针对各种机器人执行各种接送和交付任务的场景而设计的。我们考虑了联合分散任务分配和导航的问题,并提出了解决该问题的两层方法。在更高级别,我们通过根据马尔可夫决策过程制定任务并选择适当的奖励来最大程度地减少总旅行延迟(TTD)来解决任务分配。在较低级别,我们使用基于ORCA的分散导航方案,使每个机器人能够独立执行这些任务,并避免与其他机器人和动态障碍物发生碰撞。我们通过定义较高级别的奖励作为低级导航算法的反馈来结合这些下层和上层。我们在复杂的仓库布局中进行了广泛的评估,并具有大量代理商,并根据近视拾取距离距离最小化和基于遗憾的任务选择,突出了对最先进算法的好处。我们观察到任务完成时间的改善高达14%,并且在计算机器人的无碰撞轨迹方面提高了40%。
translated by 谷歌翻译
In recent years, methods based on deep neural networks, and especially Neural Improvement (NI) models, have led to a revolution in the field of combinatorial optimization. Given an instance of a graph-based problem and a candidate solution, they are able to propose a modification rule that improves its quality. However, existing NI approaches only consider node features and node-wise positional encodings to extract the instance and solution information, respectively. Thus, they are not suitable for problems where the essential information is encoded in the edges. In this paper, we present a NI model to solve graph-based problems where the information is stored either in the nodes, in the edges, or in both of them. We incorporate the NI model as a building block of hill-climbing-based algorithms to efficiently guide the election of neighborhood operations considering the solution at that iteration. Conducted experiments show that the model is able to recommend neighborhood operations that are in the $99^{th}$ percentile for the Preference Ranking Problem. Moreover, when incorporated to hill-climbing algorithms, such as Iterated or Multi-start Local Search, the NI model systematically outperforms the conventional versions. Finally, we demonstrate the flexibility of the model by extending the application to two well-known problems: the Traveling Salesman Problem and the Graph Partitioning Problem.
translated by 谷歌翻译