我们研究了在通信约束下的分布式平均值估计和优化问题。我们提出了一个相关的量化协议,该协议的误差保证中的主项取决于数据点的平均偏差,而不仅仅是它们的绝对范围。该设计不需要关于数据集的集中属性的任何先验知识,这是在以前的工作中获得这种依赖所必需的。我们表明,在分布式优化算法中应用提出的协议作为子规则会导致更好的收敛速率。我们还在轻度假设下证明了我们的方案的最佳性。实验结果表明,我们提出的算法在各种任务方面优于现有的平均估计协议。
translated by 谷歌翻译
分布式平均值估计(DME)是联邦学习中的一个中央构建块,客户将本地梯度发送到参数服务器,以平均和更新模型。由于通信限制,客户经常使用有损压缩技术来压缩梯度,从而导致估计不准确。当客户拥有多种网络条件(例如限制的通信预算和数据包损失)时,DME更具挑战性。在这种情况下,DME技术通常会导致估计误差显着增加,从而导致学习绩效退化。在这项工作中,我们提出了一种名为Eden的强大DME技术,该技术自然会处理异质通信预算和数据包损失。我们为伊甸园提供了有吸引力的理论保证,并通过经验进行评估。我们的结果表明,伊甸园对最先进的DME技术持续改进。
translated by 谷歌翻译
由于客户端的通信资源有限和大量的模型参数,大规模分布式学习任务遭受通信瓶颈。梯度压缩是通过传输压缩梯度来减少通信负载的有效方法。由于在随机梯度下降的情况下,相邻轮的梯度可能具有高相关,因为他们希望学习相同的模型,提出了一种用于联合学习的实用梯度压缩方案,它使用历史梯度来压缩梯度并且基于Wyner-Ziv编码但没有任何概率的假设。我们还在实时数据集上实现了我们的渐变量化方法,我们的方法的性能优于前一个方案。
translated by 谷歌翻译
我们考虑使用$ D $ -dimimentional的Real值矢量使用$ d(1 + o(1))$位,每个问题都以允许接收器大致重建其平均值的方式传输$ D $ -dimimentional Valued Vipors。在分布式和联合学习中自然地出现这种压缩问题。我们提供了新颖的数学结果,并导出了比以前的压缩技术更准确的计算高效算法。我们使用各种数据集来评估我们在分布式和联合学习任务的集合上的方法,并显示出对现有技术的一致性改进。
translated by 谷歌翻译
联合数据分析是一个用于分布式数据分析的框架,其中服务器从一组分布式的低型带宽用户设备中编译了嘈杂的响应,以估算总统计信息。该框架中的两个主要挑战是隐私,因为用户数据通常很敏感,并且压缩,因为用户设备的网络带宽较低。先前的工作通过将标准压缩算法与已知的隐私机制相结合,从而分别解决了这些挑战。在这项工作中,我们对问题进行了整体研究,并设计了一个适合任何给定沟通预算的隐私感知压缩机制。我们首先提出了一种在某些条件下传输具有最佳方差的单个实数的机制。然后,我们展示如何将其扩展到位置隐私用例以及向量的指标差异隐私,以应用于联合学习。我们的实验表明,在许多设置中,我们的机制可以导致更好的实用性与压缩权衡。
translated by 谷歌翻译
我们在限制下研究了一阶优化算法,即使用每个维度的$ r $ bits预算进行量化下降方向,其中$ r \ in(0,\ infty)$。我们提出了具有收敛速率的计算有效优化算法,与信息理论性能匹配:(i):(i)具有访问精确梯度甲骨文的平稳且强烈的符合目标,以及(ii)一般凸面和非平滑目标访问嘈杂的亚级别甲骨文。这些算法的关键是一种多项式复杂源编码方案,它在量化它之前将矢量嵌入随机子空间中。这些嵌入使得具有很高的概率,它们沿着转换空间的任何规范方向的投影很小。结果,量化这些嵌入,然后对原始空间进行逆变换产生一种源编码方法,具有最佳的覆盖效率,同时仅利用每个维度的$ r $ bits。我们的算法保证了位预算$ r $的任意值的最佳性,其中包括次线性预算制度($ r <1 $),以及高预算制度($ r \ geq 1 $),虽然需要$ o \ left(n^2 \右)$乘法,其中$ n $是尺寸。我们还提出了使用Hadamard子空间对这种编码方案的有效放松扩展以显着提高梯度稀疏方案的性能。数值模拟验证我们的理论主张。我们的实现可在https://github.com/rajarshisaha95/distoptconstrocncomm上获得。
translated by 谷歌翻译
Federated learning is a distributed framework according to which a model is trained over a set of devices, while keeping data localized. This framework faces several systemsoriented challenges which include (i) communication bottleneck since a large number of devices upload their local updates to a parameter server, and (ii) scalability as the federated network consists of millions of devices. Due to these systems challenges as well as issues related to statistical heterogeneity of data and privacy concerns, designing a provably efficient federated learning method is of significant importance yet it remains challenging. In this paper, we present FedPAQ, a communication-efficient Federated Learning method with Periodic Averaging and Quantization. FedPAQ relies on three key features: (1) periodic averaging where models are updated locally at devices and only periodically averaged at the server; (2) partial device participation where only a fraction of devices participate in each round of the training; and (3) quantized messagepassing where the edge nodes quantize their updates before uploading to the parameter server. These features address the communications and scalability challenges in federated learning. We also show that FedPAQ achieves near-optimal theoretical guarantees for strongly convex and non-convex loss functions and empirically demonstrate the communication-computation tradeoff provided by our method.
translated by 谷歌翻译
We consider distributed linear bandits where $M$ agents learn collaboratively to minimize the overall cumulative regret incurred by all agents. Information exchange is facilitated by a central server, and both the uplink and downlink communications are carried over channels with fixed capacity, which limits the amount of information that can be transmitted in each use of the channels. We investigate the regret-communication trade-off by (i) establishing information-theoretic lower bounds on the required communications (in terms of bits) for achieving a sublinear regret order; (ii) developing an efficient algorithm that achieves the minimum sublinear regret order offered by centralized learning using the minimum order of communications dictated by the information-theoretic lower bounds. For sparse linear bandits, we show a variant of the proposed algorithm offers better regret-communication trade-off by leveraging the sparsity of the problem.
translated by 谷歌翻译
我们考虑对跨用户设备分发的私人数据培训模型。为了确保隐私,我们添加了设备的噪声并使用安全的聚合,以便仅向服务器揭示嘈杂的总和。我们提出了一个综合的端到端系统,该系统适当地离散数据并在执行安全聚合之前添加离散的高斯噪声。我们为离散高斯人的总和提供了新的隐私分析,并仔细分析了数据量化和模块化求和算术的影响。我们的理论保证突出了沟通,隐私和准确性之间的复杂张力。我们广泛的实验结果表明,我们的解决方案基本上能够将准确性与中央差分隐私相匹配,而每个值的精度少于16位。
translated by 谷歌翻译
梯度压缩是一种流行的技术,可改善机器学习模型分布式培训中随机一阶方法的沟通复杂性。但是,现有作品仅考虑随机梯度的替换采样。相比之下,在实践中众所周知,最近从理论上证实,基于没有替代抽样的随机方法,例如随机改组方法(RR)方法,其性能要比用更换梯度进行梯度的方法更好。在这项工作中,我们在文献中缩小了这一差距,并通过梯度压缩和没有替代抽样的方法提供了第一次分析方法。我们首先使用梯度压缩(Q-RR)开发一个随机重新填充的分布式变体,并展示如何通过使用控制迭代来减少梯度量化的方差。接下来,为了更好地适合联合学习应用程序,我们结合了本地计算,并提出了一种称为Q-Nastya的Q-RR的变体。 Q-Nastya使用本地梯度步骤以及不同的本地和全球步骤。接下来,我们还展示了如何在此设置中减少压缩差异。最后,我们证明了所提出的方法的收敛结果,并概述了它们在现有算法上改进的几种设置。
translated by 谷歌翻译
联合学习的一个区别特征是(本地)客户数据可能具有统计异质性。这种异质性激发了个性化学习的设计,该学习是通过协作培训个人(个性化)模型的。文献中提出了各种个性化方法,似乎截然不同的形式和方法,从将单个全球模型用于本地正规化和模型插值,再到将多个全球模型用于个性化聚类等。在这项工作中,我们开始使用生成框架,可以统一几种不同的算法并暗示新算法。我们将生成框架应用于个性化的估计,并将其连接到经典的经验贝叶斯方法。我们在此框架下制定私人个性化估计。然后,我们将生成框架用于学习,该框架统一了几种已知的个性化FL算法,并提出了新算法。我们建议并研究一种基于知识蒸馏的新算法,该算法的数值优于几种已知算法。我们还为个性化学习方法开发隐私,并保证用户级的隐私和组成。我们通过数值评估估计和学习问题的性能以及隐私,证明了我们提出的方法的优势。
translated by 谷歌翻译
We consider the problem of federated learning in a one-shot setting in which there are $m$ machines, each observing $n$ sample functions from an unknown distribution on non-convex loss functions. Let $F:[-1,1]^d\rightarrow\mathbb{R}$ be the expected loss function with respect to this unknown distribution. The goal is to find an estimate of the minimizer of $F$. Based on its observations, each machine generates a signal of bounded length $B$ and sends it to a server. The server collects signals of all machines and outputs an estimate of the minimizer of $F$. We show that the expected loss of any algorithm is lower bounded by $\max\big(1/(\sqrt{n}(mB)^{1/d}), 1/\sqrt{mn}\big)$, up to a logarithmic factor. We then prove that this lower bound is order optimal in $m$ and $n$ by presenting a distributed learning algorithm, called Multi-Resolution Estimator for Non-Convex loss function (MRE-NC), whose expected loss matches the lower bound for large $mn$ up to polylogarithmic factors.
translated by 谷歌翻译
为了在带宽洪泛环境(例如无线网络)中启用大规模的机器学习,最近在设计借助通信压缩的帮助下,最近在设计沟通效率的联合学习算法方面取得了重大进展。另一方面,隐私保护,尤其是在客户层面上,是另一个重要的避税,在存在高级通信压缩技术的情况下尚未同时解决。在本文中,我们提出了一个统一的框架,以通过沟通压缩提高私人联邦学习的沟通效率。利用通用压缩操作员和局部差异隐私,我们首先检查了一种简单的算法,该算法将压缩直接应用于差异私密的随机梯度下降,并确定其局限性。然后,我们为私人联合学习提出了一个统一的框架Soteriafl,该框架适应了一般的局部梯度估计剂家庭,包括流行的随机方差减少梯度方法和最先进的变化压缩方案。我们在隐私,公用事业和沟通复杂性方面提供了其性能权衡的全面表征,在这种情况下,Soterafl被证明可以在不牺牲隐私或实用性的情况下实现更好的沟通复杂性,而不是其他私人联合联盟学习算法而没有沟通压缩。
translated by 谷歌翻译
隐私和沟通效率是联邦神经网络培训中的重要挑战,并将它们组合仍然是一个公开的问题。在这项工作中,我们开发了一种统一高度压缩通信和差异隐私(DP)的方法。我们引入基于相对熵编码(REC)到联合设置的压缩技术。通过对REC进行微小的修改,我们获得了一种可怕的私立学习算法,DP-REC,并展示了如何计算其隐私保证。我们的实验表明,DP-REC大大降低了通信成本,同时提供与最先进的隐私保证。
translated by 谷歌翻译
联合学习(FL)是一种新兴的范式,可实现对机器学习模型的大规模分布培训,同时仍提供隐私保证。在这项工作中,我们在将联合优化扩展到大节点计数时共同解决了两个主要的实际挑战:中央权威和单个计算节点之间紧密同步的需求以及中央服务器和客户端之间的传输成本较大。具体而言,我们提出了经典联合平均(FedAvg)算法的新变体,该算法支持异步通信和通信压缩。我们提供了一种新的分析技术,该技术表明,尽管有这些系统放松,但在合理的参数设置下,我们的算法基本上与FedAvg的最著名界限相匹配。在实验方面,我们表明我们的算法确保标准联合任务的快速实用收敛。
translated by 谷歌翻译
联合学习(FL)是一种从分散数据源训练机器学习模型的技术。我们根据当地的隐私约束概念研究FL,该概念通过在离开客户之前使数据混淆,为敏感数据披露提供了强烈的保护。我们确定了设计实用隐私的FL算法的两个主要问题:沟通效率和高维度的兼容性。然后,我们开发一种基于梯度的学习算法,称为\ emph {sqsgd}(选择性量化的随机梯度下降),以解决这两个问题。所提出的算法基于一种新颖的隐私量化方案,该方案使用每个客户每个维度的恒定位数。然后,我们通过三种方式改进基本算法:首先,我们采用梯度亚采样策略,同时在固定隐私预算下提供更好的培训性能和较小的沟通成本。其次,我们利用随机旋转作为预处理步骤来减少量化误差。第三,采用了自适应梯度标准上限策略来提高准确性和稳定训练。最后,在基准数据集中证明了拟议框架的实用性。实验结果表明,SQSGD成功地学习了Lenet和Resnet等局部隐私约束的大型模型。此外,凭借固定的隐私和通信水平,SQSGD的性能显着主导了各种基线算法。
translated by 谷歌翻译
我们开发和分析码头:在异构数据集中的非凸分布式学习的新通信高效方法。 Marina采用了一种基于渐变差异的新颖沟通压缩策略,这些差异让人想起,但与Mishchenko等人的Diana方法中所采用的策略不同。 (2019)。与几乎所有竞争对手的分布式一阶方法不同,包括Diana,我们的基于精心设计的偏置渐变估计,这是其卓越理论和实践性能的关键。我们向码头证明的通信复杂性界限明显比以前所有的一阶方法的方式更好。此外,我们开发和分析码头的两种变体:VR-Marina和PP-Marina。当客户所拥有的本地丢失功能是有限和期望形式的局部丢失功能时,第一种方法设计了第一种方法,并且第二种方法允许客户端的部分参与 - 在联合学习中重要的功能。我们所有的方法都优于前面的oracle /通信复杂性的最先进的方法。最后,我们提供了满足Polyak-Lojasiewicz条件的所有方法的收敛分析。
translated by 谷歌翻译
我们考虑一个标准的分布式优化设置,其中$ n $ machines,每个持有$ d $ -dimension函数$ f_i $,旨在共同最大限度地减少函数$ \ sum_ {i = 1} ^ n f_i(x)$ 。该问题自然地出现在大规模分布式优化中,其中标准解决方案是施加(随机)梯度下降的变体。我们专注于这个问题的通信复杂性:我们的主要结果在$ N $ Machines中提供了需要发送和接收的比特总数的第一个完全无条件的界限,以便在点对点通信下解决这个问题给定的差错。具体来说,我们显示$ \ omega(ND \ log d / n \ varepsilon)$总比特在机器之间传达,找到一个添加剂$ \ epsilon $-xprupmation到$ \ sum_ {i = 1} ^ n f_i(x)$。结果适用于确定性和随机算法,并且重要的是,不需要对算法结构上的假设。在参数值的某些限制下,下限是紧张的,并且通过量化梯度下降的新变种在恒定因子中匹配,我们描述和分析。我们的结果带来了从通信复杂性到分布式优化的工具,这具有进一步应用的潜力。
translated by 谷歌翻译
Parallel implementations of stochastic gradient descent (SGD) have received significant research attention, thanks to its excellent scalability properties. A fundamental barrier when parallelizing SGD is the high bandwidth cost of communicating gradient updates between nodes; consequently, several lossy compresion heuristics have been proposed, by which nodes only communicate quantized gradients. Although effective in practice, these heuristics do not always converge. In this paper, we propose Quantized SGD (QSGD), a family of compression schemes with convergence guarantees and good practical performance. QSGD allows the user to smoothly trade off communication bandwidth and convergence time: nodes can adjust the number of bits sent per iteration, at the cost of possibly higher variance. We show that this trade-off is inherent, in the sense that improving it past some threshold would violate information-theoretic lower bounds. QSGD guarantees convergence for convex and non-convex objectives, under asynchrony, and can be extended to stochastic variance-reduced techniques. When applied to training deep neural networks for image classification and automated speech recognition, QSGD leads to significant reductions in end-to-end training time. For instance, on 16GPUs, we can train the ResNet-152 network to full accuracy on ImageNet 1.8× faster than the full-precision variant. time to the same target accuracy is 2.7×. Further, even computationally-heavy architectures such as Inception and ResNet can benefit from the reduction in communication: on 16GPUs, QSGD reduces the end-to-end convergence time of ResNet152 by approximately 2×. Networks trained with QSGD can converge to virtually the same accuracy as full-precision variants, and that gradient quantization may even slightly improve accuracy in some settings. Related Work. One line of related research studies the communication complexity of convex optimization. In particular, [40] studied two-processor convex minimization in the same model, provided a lower bound of Ω(n(log n + log(1/ ))) bits on the communication cost of n-dimensional convex problems, and proposed a non-stochastic algorithm for strongly convex problems, whose communication cost is within a log factor of the lower bound. By contrast, our focus is on stochastic gradient methods. Recent work [5] focused on round complexity lower bounds on the number of communication rounds necessary for convex learning.Buckwild! [10] was the first to consider the convergence guarantees of low-precision SGD. It gave upper bounds on the error probability of SGD, assuming unbiased stochastic quantization, convexity, and gradient sparsity, and showed significant speedup when solving convex problems on CPUs. QSGD refines these results by focusing on the trade-off between communication and convergence. We view quantization as an independent source of variance for SGD, which allows us to employ standard convergence results [7]. The main differences from Buckw
translated by 谷歌翻译
我们提出并分析了算法,以解决用户级差分隐私约束下的一系列学习任务。用户级DP仅保证只保证个人样本的隐私,而是保护用户的整个贡献($ M \ GE 1 $ Samples),而不是对信息泄漏提供更严格但更现实的保护。我们表明,对于高维平均估计,具有平稳损失,随机凸优化和学习假设类别的经验风险最小化,具有有限度量熵,隐私成本随着用户提供的$ O(1 / \ SQRT {M})$减少更多样本。相比之下,在增加用户数量$ N $时,隐私成本以较快的价格降低(1 / n)$率。我们将这些结果与下界相提并论,显示了我们算法的最低限度估计和随机凸优化的算法。我们的算法依赖于私有平均估计的新颖技术,其任意维度与误差缩放为浓度半径$ \ tai $的分布而不是整个范围。
translated by 谷歌翻译