Denoisis扩散模型是最近在图像和音频合成中表现出最新性能的生成模型。这样的模型近似从目标分布到参考密度(通常是高斯)的正向噪声过程的时间反转。尽管有很强的经验结果,但对此类模型的理论分析仍然有限。特别是,所有当前方法都至关重要地假设目标密度允许密度W.R.T.Lebesgue度量。这不涵盖在较低维歧管上支持目标分布或通过某些经验分布给出的设置。在本文中,我们通过在更通用的环境中为扩散模型提供第一个收敛结果来弥合这一差距。特别是,我们在目标数据分布与扩散模型的生成分布之间的订单距离距离距离范围距离上提供了定量界限。
translated by 谷歌翻译
逐步应用高斯噪声将复杂的数据分布转换为大约高斯。逆转此动态定义了一种生成模型。当前进通知过程由随机微分方程(SDE),Song等人提供。 (2021)证明可以使用分数匹配估计相关反向时间SDE的时间不均匀漂移。这种方法的限制是必须在最终分布到高斯的最终分布必须运行前进时间SDE。相反,解决Schr \“odinger桥问题(SB),即路径空间上的熵正常化的最佳运输问题,产生从有限时间内从数据分布产生样本的扩散。我们存在扩散SB(DSB),原始近似迭代比例拟合(IPF)程序来解决SB问题,并提供理论分析以及生成建模实验。第一个DSB迭代恢复Song等人提出的方法。(2021),使用较短时间的灵活性间隔,随后的DSB迭代减少了前进(RESP。后向)SDE的最终时间边际之间的差异,相对于先前(RESP。数据)分布。除了生成的建模之外,DSB提供了广泛适用的计算最优运输工具流行池算法的连续状态空间模拟(Cuturi,2013)。
translated by 谷歌翻译
基于得分的生成模型(SGM)通过运行时间转移的随机微分方程(SDE)从高斯白噪声中合成新数据样本,其漂移系数取决于某些概率分数。此类SDE的离散化通常需要大量的时间步骤,因此需要高计算成本。这是因为我们通过数学分析的分数的不良条件特性。我们表明,通过将数据分布分配到跨尺度的小波系数的条件概率的产物中,可以将SGMS大大加速。最终的小波得分生成模型(WSGM)在所有尺度上都以相同的时间步长合成小波系数,因此其时间复杂性随着图像大小而线性增长。这在数学上是在高斯分布上证明的,并在相变和自然图像数据集中的物理过程上以数值显示。
translated by 谷歌翻译
我们为基于分数的生成模型(SGM)(例如Denoising扩散概率模型(DDPM))提供理论收敛保证,该模型构成了大型现实世界中生成模型的骨干,例如DALL $ \ cdot $ E2。我们的主要结果是,假设有准确的分数估计值,此类SGM可以从本质上有效地从任何现实的数据分布中进行采样。与先前的作品相反,我们的结果(1)以$ l^2 $准确的分数估算(而不是$ l^\ infty $ -CACCRATE)保持; (2)不需要限制性的功能不平等条件,而这些条件排除了实质性的非con虫; (3)在所有相关问题参数中刻度缩放; (4)匹配兰格文扩散离散的最新复杂性保证,前提是得分误差足够小。我们认为这是SGM的经验成功的强有力理论理由。我们还基于严重阻尼的Langevin扩散(CLD)检查SGM。与传统的观点相反,我们提供了证据,表明CLD的使用不会降低SGM的复杂性。
translated by 谷歌翻译
我们提出了一种基于langevin扩散的算法,以在球体的产物歧管上进行非凸优化和采样。在对数Sobolev不平等的情况下,我们根据Kullback-Leibler Divergence建立了有限的迭代迭代收敛到Gibbs分布的保证。我们表明,有了适当的温度选择,可以保证,次级最小值的次数差距很小,概率很高。作为一种应用,我们考虑了使用对角线约束解决半决赛程序(SDP)的burer- monteiro方法,并分析提出的langevin算法以优化非凸目标。特别是,我们为Burer建立了对数Sobolev的不平等现象 - 当没有虚假的局部最小值时,但在鞍点下,蒙蒂罗问题。结合结果,我们为SDP和最大切割问题提供了全局最佳保证。更确切地说,我们证明了Langevin算法在$ \ widetilde {\ omega}(\ epsilon^{ - 5})$ tererations $ tererations $ \ widetilde {\ omega}(\ omega}中,具有很高的概率。
translated by 谷歌翻译
我们为不依赖数据分布满足功能不平等的数据分布或强烈的平滑度假设提供了多项式收敛保证。假设有$ l^2 $准确的分数估计,我们可以为任何有限支撑或足够衰减的尾巴的分布获得Wasserstein距离保证,以及具有进一步平滑度假设的电视保证。
translated by 谷歌翻译
We study the multiclass classification problem where the features come from the mixture of time-homogeneous diffusions. Specifically, the classes are discriminated by their drift functions while the diffusion coefficient is common to all classes and unknown. In this framework, we build a plug-in classifier which relies on nonparametric estimators of the drift and diffusion functions. We first establish the consistency of our classification procedure under mild assumptions and then provide rates of cnvergence under different set of assumptions. Finally, a numerical study supports our theoretical findings.
translated by 谷歌翻译
我们详细介绍了一种开发Stein方法的方法,该方法是针对Riemannian歧管$ \ Mathbf M $界定的概率度量界定整体指标的。我们的方法利用了$ \ mathbf m $扩散的生成器与目标不变度度量及其表征Stein运算符之间的关系。我们考虑了一对具有不同起点的扩散,并通过对两对之间的距离过程进行分析,得出了Stein因子,该因子将解决方案绑定到Stein方程及其衍生物。Stein因子包含曲率依赖性的术语,并减少到当前可用于$ \ Mathbb r^m $的因子,此外,暗示$ \ Mathbb r^m $的界限在$ \ Mathbf M $时保持有效
translated by 谷歌翻译
变性推理(VI)为基于传统的采样方法提供了一种吸引人的替代方法,用于实施贝叶斯推断,因为其概念性的简单性,统计准确性和计算可扩展性。然而,常见的变分近似方案(例如平均场(MF)近似)需要某些共轭结构以促进有效的计算,这可能会增加不必要的限制对可行的先验分布家族,并对变异近似族对差异进行进一步的限制。在这项工作中,我们开发了一个通用计算框架,用于实施MF-VI VIA WASSERSTEIN梯度流(WGF),这是概率度量空间上的梯度流。当专门针对贝叶斯潜在变量模型时,我们将分析基于时间消化的WGF交替最小化方案的算法收敛,用于实现MF近似。特别是,所提出的算法类似于EM算法的分布版本,包括更新潜在变量变异分布的E step以及在参数的变异分布上进行最陡峭下降的m step。我们的理论分析依赖于概率度量空间中的最佳运输理论和细分微积分。我们证明了时间限制的WGF的指数收敛性,以最大程度地减少普通大地测量学严格的凸度的通用物镜功能。我们还提供了通过使用时间限制的WGF的固定点方程从MF近似获得的变异分布的指数收缩的新证明。我们将方法和理论应用于两个经典的贝叶斯潜在变量模型,即高斯混合模型和回归模型的混合物。还进行了数值实验,以补充这两个模型下的理论发现。
translated by 谷歌翻译
在本文中,我们在使用离散的Langevin扩散的三个方案中从目标密度采样的误差提供非渐近上限。第一个方案是Langevin Monte Carlo(LMC)算法,歌曲的欧拉分散化的歌曲扩散。第二个和第三种方案分别是用于可微分电位和动力学Langevin Monte Carlo的动力学Langevin Monte Carlo(KLMC),用于两次可分视电位(KLMC2)。主要焦点是在$ \ mathbb r ^ p $的目标密度上,但不一定强烈地抖动。在两种类型的平滑假设下获得计算复杂度的界限:电位具有嘴唇连续梯度,并且电位具有嘴角连续的Hessian基质。采样误差由Wassersein-$ Q $距离测量。我们倡导在计算复杂性定义中使用新的维度适应缩放,当考虑Wasserstein-$ Q $距离时。所获得的结果表明,实现小于规定值的缩放误差的迭代次数仅取决于多项尺寸。
translated by 谷歌翻译
对复杂模型执行精确的贝叶斯推理是计算的难治性的。马尔可夫链蒙特卡罗(MCMC)算法可以提供后部分布的可靠近似,但对于大型数据集和高维模型昂贵。减轻这种复杂性的标准方法包括使用子采样技术或在群集中分发数据。然而,这些方法通常在高维方案中不可靠。我们在此处专注于最近的替代类别的MCMC方案,利用类似于乘客(ADMM)优化算法的庆祝交替方向使用的分裂策略。这些方法似乎提供了凭经验最先进的性能,但其高维层的理论行为目前未知。在本文中,我们提出了一个详细的理论研究,该算法之一称为分裂Gibbs采样器。在规律条件下,我们使用RICCI曲率和耦合思路为此方案建立了明确的收敛速率。我们以数字插图支持我们的理论。
translated by 谷歌翻译
Denoising diffusions are state-of-the-art generative models which exhibit remarkable empirical performance and come with theoretical guarantees. The core idea of these models is to progressively transform the empirical data distribution into a simple Gaussian distribution by adding noise using a diffusion. We obtain new samples whose distribution is close to the data distribution by simulating a "denoising" diffusion approximating the time reversal of this "noising" diffusion. This denoising diffusion relies on approximations of the logarithmic derivatives of the noised data densities, known as scores, obtained using score matching. Such models can be easily extended to perform approximate posterior simulation in high-dimensional scenarios where one can only sample from the prior and simulate synthetic observations from the likelihood. These methods have been primarily developed for data on $\mathbb{R}^d$ while extensions to more general spaces have been developed on a case-by-case basis. We propose here a general framework which not only unifies and generalizes this approach to a wide class of spaces but also leads to an original extension of score matching. We illustrate the resulting class of denoising Markov models on various applications.
translated by 谷歌翻译
基于分数的生成模型(SGM)需要近似中间分布的分数$ \ nabla \ log p_t $以及前进过程的最终分布$ p_t $。这些近似值的理论基础仍然缺乏。我们发现SGM能够从基础(低维)数据歧管$ \ MATHCAL {M} $中产生样本的精确条件。这确保我们能够生成“正确的样本”。例如,以$ \ mathcal {m} $作为面部图像的子集,我们发现SGM稳健产生面部图像的条件,即使这些图像的相对频率可能无法准确表示真实数据生成分布。此外,该分析是了解SGMS的概括属性的第一步:采用$ \ Mathcal {M} $作为所有培训样本的集合,我们的结果提供了SGM何时记住其培训数据的精确描述。
translated by 谷歌翻译
We consider the constrained sampling problem where the goal is to sample from a distribution $\pi(x)\propto e^{-f(x)}$ and $x$ is constrained on a convex body $\mathcal{C}\subset \mathbb{R}^d$. Motivated by penalty methods from optimization, we propose penalized Langevin Dynamics (PLD) and penalized Hamiltonian Monte Carlo (PHMC) that convert the constrained sampling problem into an unconstrained one by introducing a penalty function for constraint violations. When $f$ is smooth and the gradient is available, we show $\tilde{\mathcal{O}}(d/\varepsilon^{10})$ iteration complexity for PLD to sample the target up to an $\varepsilon$-error where the error is measured in terms of the total variation distance and $\tilde{\mathcal{O}}(\cdot)$ hides some logarithmic factors. For PHMC, we improve this result to $\tilde{\mathcal{O}}(\sqrt{d}/\varepsilon^{7})$ when the Hessian of $f$ is Lipschitz and the boundary of $\mathcal{C}$ is sufficiently smooth. To our knowledge, these are the first convergence rate results for Hamiltonian Monte Carlo methods in the constrained sampling setting that can handle non-convex $f$ and can provide guarantees with the best dimension dependency among existing methods with deterministic gradients. We then consider the setting where unbiased stochastic gradients are available. We propose PSGLD and PSGHMC that can handle stochastic gradients without Metropolis-Hasting correction steps. When $f$ is strongly convex and smooth, we obtain an iteration complexity of $\tilde{\mathcal{O}}(d/\varepsilon^{18})$ and $\tilde{\mathcal{O}}(d\sqrt{d}/\varepsilon^{39})$ respectively in the 2-Wasserstein distance. For the more general case, when $f$ is smooth and non-convex, we also provide finite-time performance bounds and iteration complexity results. Finally, we test our algorithms on Bayesian LASSO regression and Bayesian constrained deep learning problems.
translated by 谷歌翻译
连续数据的优化问题出现在,例如强大的机器学习,功能数据分析和变分推理。这里,目标函数被给出为一个(连续)索引目标函数的系列 - 相对于概率测量集成的族聚集。这些问题通常可以通过随机优化方法解决:在随机切换指标执行关于索引目标函数的优化步骤。在这项工作中,我们研究了随机梯度下降算法的连续时间变量,以进行连续数据的优化问题。该所谓的随机梯度过程包括最小化耦合与确定索引的连续时间索引过程的索引目标函数的梯度流程。索引过程是例如,反射扩散,纯跳跃过程或紧凑空间上的其他L evy过程。因此,我们研究了用于连续数据空间的多种采样模式,并允许在算法的运行时进行模拟或流式流的数据。我们分析了随机梯度过程的近似性质,并在恒定下进行了长时间行为和遍历的学习率。我们以噪声功能数据的多项式回归问题以及物理知识的神经网络在多项式回归问题中结束了随机梯度过程的适用性。
translated by 谷歌翻译
Score-based generative models are shown to achieve remarkable empirical performances in various applications such as image generation and audio synthesis. However, a theoretical understanding of score-based diffusion models is still incomplete. Recently, Song et al. showed that the training objective of score-based generative models is equivalent to minimizing the Kullback-Leibler divergence of the generated distribution from the data distribution. In this work, we show that score-based models also minimize the Wasserstein distance between them under suitable assumptions on the model. Specifically, we prove that the Wasserstein distance is upper bounded by the square root of the objective function up to multiplicative constants and a fixed constant offset. Our proof is based on a novel application of the theory of optimal transport, which can be of independent interest to the society. Our numerical experiments support our findings. By analyzing our upper bounds, we provide a few techniques to obtain tighter upper bounds.
translated by 谷歌翻译
经典地,连续时间兰富文队扩散在唯一的假设下迅速迅速迅速迅速迅速,以至于$ \ PI $满足POINCAR的不平等。使用这一事实来为离散时间Langevin Monte Carlo(LMC)算法提供保证,因此由于需要与Chi Squared或R \'enyi分歧的需要,并且在很大程度上主要重点关注日志凹形目标。在这项工作中,我们为LMC提供了第一个收敛保证,假设$ \ PI $满足Lata {\ l} a - oleszkiewicz或修改的log-sobolev不等式,它在Poincar \ e和log-sobolev设置之间插值。与现有作品不同,我们的结果允许弱滑性,并且不需要凸起或耗散条件。
translated by 谷歌翻译
我们调查了一定类别的功能不等式,称为弱Poincar的不等式,以使Markov链的收敛性与均衡相结合。我们表明,这使得SubGoom测量收敛界的直接和透明的推导出用于独立的Metropolis - Hastings采样器和用于棘手似然性的伪边缘方法,后者在许多实际设置中是子表芯。这些结果依赖于马尔可夫链之间的新量化比较定理。相关证据比依赖于漂移/较小化条件的证据更简单,并且所开发的工具允许我们恢复并进一步延长特定情况的已知结果。我们能够为伪边缘算法的实际使用提供新的见解,分析平均近似贝叶斯计算(ABC)的效果以及独立平均值的产品,以及研究与之相关的逻辑重量的情况粒子边缘大都市 - 黑斯廷斯(PMMH)。
translated by 谷歌翻译
我们为随机梯度Langevin动态(SGLD)建立了泛化误差界,在耗散度和平滑度的假设下,在采样/优化文献中得到了增加的环境。与非凸面设置中的SGLD的现有范围不同,由于样本大小的增加,我们的SGLD与SGL的界限不同,并且随着样本量的增加而衰减至零。利用均匀稳定性框架,我们通过利用Langevin扩散的Wasserstein收缩属性来建立无关的界限,这也允许我们规避需要使用LipsChitz的假设来绑定渐变的渐变。我们的分析还支持使用不同离散化方法的SGLD的变体,包括欧几里德投影,或使用非各向同性噪声。
translated by 谷歌翻译
We consider the problem of estimating the optimal transport map between a (fixed) source distribution $P$ and an unknown target distribution $Q$, based on samples from $Q$. The estimation of such optimal transport maps has become increasingly relevant in modern statistical applications, such as generative modeling. At present, estimation rates are only known in a few settings (e.g. when $P$ and $Q$ have densities bounded above and below and when the transport map lies in a H\"older class), which are often not reflected in practice. We present a unified methodology for obtaining rates of estimation of optimal transport maps in general function spaces. Our assumptions are significantly weaker than those appearing in the literature: we require only that the source measure $P$ satisfies a Poincar\'e inequality and that the optimal map be the gradient of a smooth convex function that lies in a space whose metric entropy can be controlled. As a special case, we recover known estimation rates for bounded densities and H\"older transport maps, but also obtain nearly sharp results in many settings not covered by prior work. For example, we provide the first statistical rates of estimation when $P$ is the normal distribution and the transport map is given by an infinite-width shallow neural network.
translated by 谷歌翻译