无监督的域适应性(UDA)旨在使用标记的源域学习机器学习模型,该源域在类似但不同的未标记目标域上表现良好。 UDA在许多应用(例如医学)中很重要,在医学上,它用于适应不同患者队列的风险评分。在本文中,我们为UDA的时间序列数据(称为Cluda)开发了一个新颖的框架。具体而言,我们提出了一个对比度学习框架,以学习多元时间序列中的域不变语义,以便为预测任务保留标签信息。在我们的框架中,我们通过最近的邻居对比学习进一步捕获源和目标域之间的语义变化。据我们所知,我们的第一个框架是学习时间序列数据UDA的域不变语义信息。我们使用医学时间序列(即Mimic-IV和Amsterdamumcdb)使用大规模的现实世界数据集评估我们的框架,以证明其有效性,并表明它在UDA时实现了最先进的性能。
translated by 谷歌翻译
Unsupervised Domain Adaptation (UDA) has emerged as a powerful solution for the domain shift problem via transferring the knowledge from a labeled source domain to a shifted unlabeled target domain. Despite the prevalence of UDA for visual applications, it remains relatively less explored for time-series applications. In this work, we propose a novel lightweight contrastive domain adaptation framework called CoTMix for time-series data. Unlike existing approaches that either use statistical distances or adversarial techniques, we leverage contrastive learning solely to mitigate the distribution shift across the different domains. Specifically, we propose a novel temporal mixup strategy to generate two intermediate augmented views for the source and target domains. Subsequently, we leverage contrastive learning to maximize the similarity between each domain and its corresponding augmented view. The generated views consider the temporal dynamics of time-series data during the adaptation process while inheriting the semantics among the two domains. Hence, we gradually push both domains towards a common intermediate space, mitigating the distribution shift across them. Extensive experiments conducted on four real-world time-series datasets show that our approach can significantly outperform all state-of-the-art UDA methods. The implementation code of CoTMix is available at \href{https://github.com/emadeldeen24/CoTMix}{github.com/emadeldeen24/CoTMix}.
translated by 谷歌翻译
无监督域适应(UDA)已成功解决了可视应用程序的域移位问题。然而,由于以下原因,这些方法可能对时间序列数据的性能有限。首先,它们主要依赖于用于源预制的大规模数据集(即,ImageNet),这不适用于时间序列数据。其次,它们在域对齐步骤期间忽略源极限和目标域的特征空间上的时间维度。最后,最先前的UDA方法中的大多数只能对齐全局特征而不考虑目标域的细粒度分布。为了解决这些限制,我们提出了一个自我监督的自回归域适应(Slarda)框架。特别是,我们首先设计一个自我监督的学习模块,它利用预测作为辅助任务以提高源特征的可转换性。其次,我们提出了一种新的自回归域自适应技术,其包括在域对齐期间源和目标特征的时间依赖性。最后,我们开发了一个集合教师模型,通过自信的伪标记方法对准目标域中的类明智分发。已经在三个现实世界时间序列应用中进行了广泛的实验,具有30个跨域方案。结果表明,我们所提出的杆状方法明显优于时序序列域适应的最先进的方法。
translated by 谷歌翻译
无监督的域适应(UDA)旨在将标记的源分布与未标记的目标分布对齐,以获取域不变预测模型。然而,众所周知的UDA方法的应用在半监督域适应(SSDA)方案中不完全概括,其中来自目标域的少数标记的样本可用。在本文中,我们提出了一种用于半监督域适应(CLDA)的简单对比学习框架,该框架试图在SSDA中弥合标记和未标记的目标分布与源极和未标记的目标分布之间的域间差距之间的域间隙。我们建议采用类明智的对比学学习来降低原始(输入图像)和强大增强的未标记目标图像之间的域间间隙和实例级对比度对准,以最小化域内差异。我们已经凭经验表明,这两个模块相互补充,以实现卓越的性能。在三个众所周知的域适应基准数据集中的实验即Domainnet,Office-Home和Office31展示了我们方法的有效性。 CLDA在所有上述数据集上实现最先进的结果。
translated by 谷歌翻译
Wearable sensor-based human activity recognition (HAR) has emerged as a principal research area and is utilized in a variety of applications. Recently, deep learning-based methods have achieved significant improvement in the HAR field with the development of human-computer interaction applications. However, they are limited to operating in a local neighborhood in the process of a standard convolution neural network, and correlations between different sensors on body positions are ignored. In addition, they still face significant challenging problems with performance degradation due to large gaps in the distribution of training and test data, and behavioral differences between subjects. In this work, we propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED), that accounts for individual sensor orientations and spatial and temporal features. The proposed method is capable of learning cross-domain embedding feature representations from multiple subjects datasets using adversarial learning and the maximum mean discrepancy (MMD) regularization to align the data distribution over multiple domains. In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition. Experimental results show that TASKED not only outperforms state-of-the-art methods on the four real-world public HAR datasets (alone or combined) but also improves the subject generalization effectively.
translated by 谷歌翻译
人类行为越来越多地在移动设备上捕获,从而增加了对自动人类活动识别的兴趣。但是,现有数据集通常由脚本运动组成。我们的长期目标是在自然环境中执行移动活动识别。我们收集一个数据集,以支持与下游任务(例如健康监测和干预)相关的活动类别。由于人类行为中存在巨大的差异,因此我们收集了两个不同年龄段的许多参与者的数据。由于人类行为会随着时间的流逝而改变,因此我们还在一个月的时间内收集参与者的数据以捕捉时间漂移。我们假设移动活动识别可以受益于无监督的域适应算法。为了满足这一需求并检验这一假设,我们分析了整个人和整个时间的域适应性的性能。然后,我们通过对比度学习来增强无监督的域适应性,并在可用标签比例时进行弱监督。该数据集可在https://github.com/wsu-casas/smartwatch-data上找到
translated by 谷歌翻译
深度学习模型的最新发展,捕捉作物物候的复杂的时间模式有卫星图像时间序列(坐在),大大高级作物分类。然而,当施加到目标区域从训练区空间上不同的,这些模型差没有任何目标标签由于作物物候区域之间的时间位移进行。为了解决这个无人监督跨区域适应环境,现有方法学域不变特征没有任何目标的监督,而不是时间偏移本身。因此,这些技术提供了SITS只有有限的好处。在本文中,我们提出TimeMatch,一种新的无监督领域适应性方法SITS直接占时移。 TimeMatch由两个部分组成:1)时间位移的估计,其估计具有源极训练模型的未标记的目标区域的时间偏移,和2)TimeMatch学习,它结合了时间位移估计与半监督学习到一个分类适应未标记的目标区域。我们还引进了跨区域适应的开放式访问的数据集与来自欧洲四个不同区域的旁边。在此数据集,我们证明了TimeMatch优于所有竞争的方法,通过11%的在五个不同的适应情景F1-得分,创下了新的国家的最先进的跨区域适应性。
translated by 谷歌翻译
在时间序列上进行预训练会带来独特的挑战,这是由于预训练和目标域之间的潜在不匹配,例如时间动力学的变化,快速变化的趋势以及远距离循环效应和短期循环效应,这会导致下游差的差表现。尽管域适应方法可以减轻这些偏移,但大多数方法都需要直接从目标域中进行示例,从而使其次优于预训练。为了应对这一挑战,方法需要适应具有不同时间动力学的目标域,并且能够在预训练期间看到任何目标示例。相对于其他方式,在时间序列中,我们期望同一示例的基于时间和频率的表示形式靠近时间频率。为此,我们认为时间频一致性(TF-C)(将特定示例的基于时间的社区嵌入到其基于频率的邻居和后背)是可取的。由TF-C激发,我们定义了一个可分解的预训练模型,其中自我监督信号由时间和频率分量之间的距离提供,每个信号通过对比度估计单独训练。我们在八个数据集上评估了新方法,包括电诊断测试,人类活动识别,机械故障检测和身体状态监测。针对八种最先进方法的实验表明,在一对一的设置中,TF-C平均比基准平均超过15.4%(F1分数)(例如,在EMG数据上对EEG预测的模型进行微调)和在具有挑战性的一对一环境中,最多可达8.4%(F1得分),这反映了现实世界应用中出现的场景广度。源代码和数据集可在https://anonymon.4open.science/r/tfc-pretraining-6b07上找到。
translated by 谷歌翻译
学习时间序列表示只有未标记的数据或几个标签样本可用时,可能是一项具有挑战性的任务。最近,通过对比,通过对比的不同数据观点从未标记的数据中提取有用的表示形式方面,对对比的自我监督学习表现出了很大的改进。在这项工作中,我们通过时间和上下文对比(TS-TCC)提出了一个新颖的时间序列表示学习框架,该框架从未标记的数据中学习了具有对比性学习的无标记数据的表示。具体而言,我们建议时间序列特定的弱和强大的增强,并利用他们的观点在拟议的时间对比模块中学习稳健的时间关系,除了通过我们提出的上下文对比模块学习判别性表示。此外,我们对时间序列数据增强选择进行系统研究,这是对比度学习的关键部分。我们还将TS-TCC扩展到了半监督的学习设置,并提出了一种类感知的TS-TCC(CA-TCC),从可用的少数标​​记数据中受益,以进一步改善TS-TCC学到的表示。具体而言,我们利用TS-TCC生成的强大伪标签来实现班级感知的对比损失。广泛的实验表明,对我们提议的框架所学的功能的线性评估与完全监督的培训相当。此外,我们的框架在少数标记的数据和转移学习方案中显示出高效率。该代码可在\ url {https://github.com/emadeldeen24/ts-tcc}上公开获得。
translated by 谷歌翻译
Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially-costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions.
translated by 谷歌翻译
域的概括方法旨在学习使用有限数量的源域,在训练过程中无需访问目标域样本的数据,以学习强大的域移动模型。用于域概括的流行域对齐方法寻求通过最大程度地降低所有域的特征分布之间的差异来提取域不变特征,从而无视域间关系。在本文中,我们提出了一种新颖的表示学习方法,该方法有选择地强制估计密切相关的源域之间的预测一致性。具体而言,我们假设域共享不同的类信息表示形式,因此,我们仅适用于所有可能导致负转移的域,而是正规化与密切相关域之间的差异。我们将我们的方法应用于时间序列分类任务,并在三个公共现实世界数据集上进行全面的实验。与最先进的方法相比,在准确性和模型校准方面,我们的方法比基线大大改善了基线,并取得更好或竞争性的性能。
translated by 谷歌翻译
生物医学机器阅读理解(生物医学MRC)旨在理解复杂的生物医学叙事,并协助医疗保健专业人员从中检索信息。现代神经网络的MRC系统的高性能取决于高质量的大规模,人为宣传的培训数据集。在生物医学领域中,创建此类数据集的一个至关重要的挑战是域知识的要求,引起了标记数据的稀缺性以及从标记的通用(源)域转移学习到生物医学(目标)域的需求。然而,由于主题方差,通用和生物医学领域之间的边际分布存在差异。因此,从在通用域上训练的模型到生物医学领域的模型直接转移学会的表示可能会损害模型的性能。我们为生物医学机器阅读理解任务(BioAdapt-MRC)提供了基于对抗性学习的域适应框架,这是一种基于神经网络的方法,可解决一般和生物医学域数据之间边际分布中的差异。 Bioadapt-MRC松弛了生成伪标签的需求,以训练表现出色的生物医学MRC模型。我们通过将生物ADAPT-MRC与三种广泛使用的基准生物医学MRC数据集进行比较,从而广泛评估了生物ADAPT-MRC的性能-Bioasq-7B,BioASQ-8B和BioASQ-9B。我们的结果表明,如果不使用来自生物医学领域的任何合成或人类通知的数据,Bioadapt-MRC可以在这些数据集中实现最先进的性能。可用性:bioadapt-MRC可作为开放源项目免费获得,\ url {https://github.com/mmahbub/bioadapt-mrc}。
translated by 谷歌翻译
自我监督的学习(SSL)最近成为特征学习方法中的最爱。因此,它可以吸引域适应方法来考虑结合SSL。直觉是强制执行实例级别一致性,使得预测器在域中变得不变。但是,域适应制度中的大多数现有SSL方法通常被视为独立的辅助组件,使域自适应的签名无人看管。实际上,域间隙消失的最佳区域和SSL PERUSES的实例级别约束可能根本不一致。从这一点来看,我们向一个特定的范式的自我监督学习量身定制,用于域适应,即可转让的对比学习(TCL),这与SSL和所需的跨域转移性相一致地联系起来。我们发现对比学习本质上是一个合适的域适应候选者,因为它的实例不变性假设可以方便地促进由域适应任务青睐的跨域类级不变性。基于特定的记忆库结构和伪标签策略,TCL然后通过清洁和新的对比损失来惩罚源头和靶之间的跨域内域差异。免费午餐是由于纳入对比学习,TCL依赖于移动平均的关键编码器,自然地实现了用于目标数据的伪标签的暂停标签,这避免了无额外的成本。因此,TCL有效地减少了跨域间隙。通过对基准(Office-Home,Visda-2017,Diamet-Five,PACS和Domainnet)进行广泛的实验,用于单源和多源域适配任务,TCL已经证明了最先进的性能。
translated by 谷歌翻译
半监督域适应(SSDA)是一种具有挑战性的问题,需要克服1)以朝向域的较差的数据和2)分布换档的方法。不幸的是,由于培训数据偏差朝标标样本训练,域适应(DA)和半监督学习(SSL)方法的简单组合通常无法解决这两个目的。在本文中,我们介绍了一种自适应结构学习方法,以规范SSL和DA的合作。灵感来自多视图学习,我们建议的框架由共享特征编码器网络和两个分类器网络组成,用于涉及矛盾的目的。其中,其中一个分类器被应用于组目标特征以提高级别的密度,扩大了鲁棒代表学习的分类集群的间隙。同时,其他分类器作为符号器,试图散射源功能以增强决策边界的平滑度。目标聚类和源扩展的迭代使目标特征成为相应源点的扩张边界内的封闭良好。对于跨域特征对齐和部分标记的数据学习的联合地址,我们应用最大平均差异(MMD)距离最小化和自培训(ST)将矛盾结构投影成共享视图以进行可靠的最终决定。对标准SSDA基准的实验结果包括Domainnet和Office-Home,展示了我们对最先进的方法的方法的准确性和稳健性。
translated by 谷歌翻译
在这项工作中,我们以一种充满挑战的自我监督方法研究无监督的领域适应性(UDA)。困难之一是如何在没有目标标签的情况下学习任务歧视。与以前的文献直接使跨域分布或利用反向梯度保持一致,我们建议域混淆对比度学习(DCCL),以通过域难题桥接源和目标域,并在适应后保留歧视性表示。从技术上讲,DCCL搜索了最大的挑战方向,而精美的工艺领域将增强型混淆为正对,然后对比鼓励该模型向其他领域提取陈述,从而学习更稳定和有效的域名。我们还研究对比度学习在执行其他数据增强时是否必然有助于UDA。广泛的实验表明,DCCL明显优于基准。
translated by 谷歌翻译
在本文中,我们提出了一种使用域鉴别特征模块的双模块网络架构,以鼓励域不变的特征模块学习更多域不变的功能。该建议的架构可以应用于任何利用域不变功能的任何模型,用于无监督域适应,以提高其提取域不变特征的能力。我们在作为代表性算法的神经网络(DANN)模型的区域 - 对抗训练进行实验。在培训过程中,我们为两个模块提供相同的输入,然后分别提取它们的特征分布和预测结果。我们提出了差异损失,以找到预测结果的差异和两个模块之间的特征分布。通过对抗训练来最大化其特征分布和最小化其预测结果的差异,鼓励两个模块分别学习更多域歧视和域不变特征。进行了广泛的比较评估,拟议的方法在大多数无监督的域适应任务中表现出最先进的。
translated by 谷歌翻译
自我监督学习(SSL)是一个新的范式,用于学习判别性表示没有标记的数据,并且与受监督的对手相比,已经达到了可比甚至最新的结果。对比度学习(CL)是SSL中最著名的方法之一,试图学习一般性的信息表示数据。 CL方法主要是针对仅使用单个传感器模态的计算机视觉和自然语言处理应用程序开发的。但是,大多数普遍的计算应用程序都从各种不同的传感器模式中利用数据。虽然现有的CL方法仅限于从一个或两个数据源学习,但我们提出了可可(Crockoa)(交叉模态对比度学习),这是一种自我监督的模型,该模型采用新颖的目标函数来通过计算多功能器数据来学习质量表示形式不同的数据方式,并最大程度地减少了无关实例之间的相似性。我们评估可可对八个最近引入最先进的自我监督模型的有效性,以及五个公共数据集中的两个受监督的基线。我们表明,可可与所有其他方法相比,可可的分类表现出色。同样,可可比其他可用标记数据的十分之一的基线(包括完全监督的模型)的标签高得多。
translated by 谷歌翻译
睡眠分期在诊断和治疗睡眠障碍中非常重要。最近,已经提出了许多数据驱动的深度学习模型,用于自动睡眠分期。他们主要在一个大型公共标签的睡眠数据集上训练该模型,并在较小的主题上对其进行测试。但是,他们通常认为火车和测试数据是从相同的分布中绘制的,这可能在现实世界中不存在。最近已经开发了无监督的域适应性(UDA)来处理此域移位问题。但是,以前用于睡眠分期的UDA方法具有两个主要局限性。首先,他们依靠一个完全共享的模型来对齐,该模型可能会在功能提取过程中丢失特定于域的信息。其次,它们仅在全球范围内将源和目标分布对齐,而无需考虑目标域中的类信息,从而阻碍了测试时模型的分类性能。在这项工作中,我们提出了一个名为Adast的新型对抗性学习框架,以解决未标记的目标域中的域转移问题。首先,我们开发了一个未共享的注意机制,以保留两个领域中的域特异性特征。其次,我们设计了一种迭代自我训练策略,以通过目标域伪标签提高目标域上的分类性能。我们还建议双重分类器,以提高伪标签的鲁棒性和质量。在六个跨域场景上的实验结果验证了我们提出的框架的功效及其优于最先进的UDA方法。源代码可在https://github.com/emadeldeen24/adast上获得。
translated by 谷歌翻译
实用的现实世界数据集具有丰富的类别,为无监督的领域适应带来了新的挑战,例如小型阶层歧视性,仅依靠域不变性的现有方法不能很好地处理。在这项工作中,我们提出了MEMSAC,该MEMSAC利用了跨源和目标域的样本级别相似性​​,以实现判别性转移,以​​及扩展到大量类别的体系结构。为此,我们首先引入一种内存增强方法,以在标记的源和未标记的目标域实例之间有效提取成对的相似性关系,该实例适用于处理任意数量的类。接下来,我们建议和理论上证明对比损失的新型变体,以促进阶层内跨域样本之间的局部一致性,同时在类别之间执行分离,从而保留从源到目标的歧视性转移。我们验证了MEMSAC的优势,比以前的最先进的最先进的转移任务有了显着改进。我们还提供了深入的分析和对MEMSAC有效性的见解。
translated by 谷歌翻译
虽然在许多域内生成并提供了大量的未标记数据,但对视觉数据的自动理解的需求高于以往任何时候。大多数现有机器学习模型通常依赖于大量标记的训练数据来实现高性能。不幸的是,在现实世界的应用中,不能满足这种要求。标签的数量有限,手动注释数据昂贵且耗时。通常需要将知识从现有标记域传输到新域。但是,模型性能因域之间的差异(域移位或数据集偏差)而劣化。为了克服注释的负担,域适应(DA)旨在在将知识从一个域转移到另一个类似但不同的域中时减轻域移位问题。无监督的DA(UDA)处理标记的源域和未标记的目标域。 UDA的主要目标是减少标记的源数据和未标记的目标数据之间的域差异,并在培训期间在两个域中学习域不变的表示。在本文中,我们首先定义UDA问题。其次,我们从传统方法和基于深度学习的方法中概述了不同类别的UDA的最先进的方法。最后,我们收集常用的基准数据集和UDA最先进方法的报告结果对视觉识别问题。
translated by 谷歌翻译