汽车MMWAVE雷达在高级驾驶员辅助系统(ADA)和自动驾驶中起关键作用。基于深度学习的实例细分可以从雷达检测点实时对象识别。在常规培训过程中,准确的注释是关键。然而,由于雷达检测点的高质量注释,由于其歧义和稀疏性,要实现挑战。为了解决这个问题,我们提出了一种实施基于雷达检测点的实例细分的对比学习方法。我们根据地面真相标签定义正面和负样品,将对比度损失首先训练模型,然后对以下下游任务进行微调。此外,可以将这两个步骤合并为一个,并且可以为未标记的数据生成伪标签,以进一步提高性能。因此,我们的方法有四种不同的培训设置。实验表明,当仅适用于一小部分培训数据时,我们的方法仍然可以与以100%基真实信息进行监督的方式实现可比的性能。
translated by 谷歌翻译
Deep learning has attained remarkable success in many 3D visual recognition tasks, including shape classification, object detection, and semantic segmentation. However, many of these results rely on manually collecting densely annotated real-world 3D data, which is highly time-consuming and expensive to obtain, limiting the scalability of 3D recognition tasks. Thus, we study unsupervised 3D recognition and propose a Self-supervised-Self-Labeled 3D Recognition (SL3D) framework. SL3D simultaneously solves two coupled objectives, i.e., clustering and learning feature representation to generate pseudo-labeled data for unsupervised 3D recognition. SL3D is a generic framework and can be applied to solve different 3D recognition tasks, including classification, object detection, and semantic segmentation. Extensive experiments demonstrate its effectiveness. Code is available at https://github.com/fcendra/sl3d.
translated by 谷歌翻译
深度学习已成为火星探索的强大工具。火星地形细分是一项重要的火星愿景任务,它是漫游者自动计划和安全驾驶的基础。但是,现有的基于深度学习的地形细分方法遇到了两个问题:一个是缺乏足够的详细和高信心注释,另一个是模型过度依赖于注释的培训数据。在本文中,我们从联合数据和方法设计的角度解决了这两个问题。我们首先提出了一个新的火星地形细分数据集,该数据集包含6K高分辨率图像,并根据置信度稀疏注释,以确保标签的高质量。然后从这些稀疏的数据中学习,我们为火星地形细分的基于表示的学习框架,包括一个自我监督的学习阶段(用于预训练)和半监督的学习阶段(用于微调)。具体而言,对于自我监督的学习,我们设计了一个基于掩盖图像建模(MIM)概念的多任务机制,以强调图像的纹理信息。对于半监督的学习,由于我们的数据集很少注释,因此我们鼓励该模型通过在线生成和利用伪标签来挖掘每个图像中未标记的区域的信息。我们将数据集和方法命名为MARS(S $^{5} $ MARS)的自我监督和半监督分割。实验结果表明,我们的方法可以超越最先进的方法,并通过很大的边距提高地形分割性能。
translated by 谷歌翻译
大规模点云的注释仍然耗时,并且对于许多真实世界任务不可用。点云预训练是用于获得快速适配的可扩展模型的一个潜在解决方案。因此,在本文中,我们调查了一种新的自我监督学习方法,称为混合和解除戒(MD),用于点云预培训。顾名思义,我们探索如何将原始点云与混合点云分开,并利用这一具有挑战的任务作为模型培训的借口优化目标。考虑到原始数据集中的有限培训数据,这远低于普遍的想象,混合过程可以有效地产生更高质量的样本。我们构建一个基线网络以验证我们的直觉,只包含两个模块,编码器和解码器。给定混合点云,首先预先训练编码器以提取语义嵌入。然后,利用实例 - 自适应解码器根据嵌入来解除点云。尽管简单,编码器本质上是能够在训练后捕获点云关键点,并且可以快速适应下游任务,包括预先训练和微调范例的分类和分割。在两个数据集上的广泛实验表明编码器+我们的(MD)显着超越了从头划痕培训的编码器和快速收敛的编码器。在消融研究中,我们进一步研究了每个部件的效果,并讨论了拟议的自我监督学习策略的优势。我们希望这种自我监督的学习尝试点云可以铺平了减少对大规模标记数据的深度学习模型依赖的方式,并在将来节省了大量的注释成本。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
我们对最近的自我和半监督ML技术进行严格的评估,从而利用未标记的数据来改善下游任务绩效,以河床分割的三个遥感任务,陆地覆盖映射和洪水映射。这些方法对于遥感任务特别有价值,因为易于访问未标记的图像,并获得地面真理标签通常可以昂贵。当未标记的图像(标记数据集之外)提供培训时,我们量化性能改进可以对这些遥感分割任务进行期望。我们还设计实验以测试这些技术的有效性,当测试集相对于训练和验证集具有域移位时。
translated by 谷歌翻译
手动注释复杂的场景点云数据集昂贵且容易出错。为了减少对标记数据的依赖性,提出了一种名为Snapshotnet的新模型作为自我监督的特征学习方法,它直接用于复杂3D场景的未标记点云数据。 Snapshotnet Pipleine包括三个阶段。在快照捕获阶段,从点云场景中采样被定义为本地点的快照。快照可以是直接从真实场景捕获的本地3D扫描的视图,或者从大3D 3D点云数据集中的虚拟视图。也可以在不同的采样率或视野(FOV)的不同采样率或视野(FOV)中进行对快照进行,从而从场景中捕获比例信息。在特征学习阶段,提出了一种名为Multi-FoV对比度的新的预文本任务,以识别两个快照是否来自同一对象,而不是在同一FOV中或跨不同的FOV中。快照通过两个自我监督的学习步骤:对比学习步骤与零件和比例对比度,然后是快照聚类步骤以提取更高的级别语义特征。然后,通过首先培训在学习特征上的标准SVM分类器的培训中实现了弱监督的分割阶段,其中包含少量标记的快照。训练的SVM用于预测输入快照的标签,并使用投票过程将预测标签转换为整个场景的语义分割的点明智标签分配。实验是在语义3D数据集上进行的,结果表明,该方法能够从无任何标签的复杂场景数据的快照学习有效特征。此外,当与弱监管点云语义分割的SOA方法相比,该方法已经显示了优势。
translated by 谷歌翻译
上下文信息对于各种计算机视觉任务至关重要,以前的作品通常设计插件模块和结构损失,以有效地提取和汇总全局上下文。这些方法利用优质标签来优化模型,但忽略了精细训练的特征也是宝贵的训练资源,可以将优选的分布引入硬像素(即错误分类的像素)。受到无监督范式的对比学习的启发,我们以监督的方式应用了对比度损失,并重新设计了损失功能,以抛弃无监督学习的刻板印象(例如,积极和负面的不平衡,对锚定计算的混淆)。为此,我们提出了阳性阴性相等的对比损失(PNE损失),这增加了阳性嵌入对锚的潜在影响,并同时对待阳性和阴性样本对。 PNE损失可以直接插入现有的语义细分框架中,并以可忽视的额外计算成本导致出色的性能。我们利用许多经典的分割方法(例如,DeepLabv3,Ocrnet,Upernet)和骨干(例如Resnet,Hrnet,Swin Transformer)进行全面的实验,并在两个基准数据集(例如,例如,例如,,例如城市景观和可可固定)。我们的代码将公开
translated by 谷歌翻译
大多数现有的点云实例和语义分割方法在很大程度上依赖于强大的监督信号,这需要场景中每个点的点级标签。但是,这种强大的监督遭受了巨大的注释成本,引起了研究有效注释的需求。在本文中,我们发现实例的位置对实例和语义3D场景细分都很重要。通过充分利用位置,我们设计了一种弱监督的点云分割算法,该算法仅需要单击每个实例以指示其注释的位置。通过进行预处理过度分割,我们将这些位置注释扩展到seg级标签中。我们通过将未标记的片段分组分组到相关的附近标签段中,进一步设计一个段分组网络(SEGGROUP),以在SEG级标签下生成点级伪标签,以便现有的点级监督的分段模型可以直接消耗这些PSEUDO标签为了训练。实验结果表明,我们的SEG级监督方法(SEGGROUP)通过完全注释的点级监督方法获得了可比的结果。此外,在固定注释预算的情况下,它的表现优于最近弱监督的方法。
translated by 谷歌翻译
现有的无监督点云预训练的方法被限制在场景级或点/体素级实例歧视上。场景级别的方法往往会失去对识别道路对象至关重要的本地细节,而点/体素级方法固有地遭受了有限的接收领域,而这种接收领域无力感知大型对象或上下文环境。考虑到区域级表示更适合3D对象检测,我们设计了一个新的无监督点云预训练框架,称为proposalcontrast,该框架通过对比的区域建议来学习强大的3D表示。具体而言,通过从每个点云中采样一组详尽的区域建议,每个提案中的几何点关系都是建模用于创建表达性建议表示形式的。为了更好地适应3D检测属性,提案contrast可以通过群体间和统一分离来优化,即提高跨语义类别和对象实例的提议表示的歧视性。在各种3D检测器(即PV-RCNN,Centerpoint,Pointpillars和Pointrcnn)和数据集(即Kitti,Waymo和一次)上验证了提案cont抗对流的概括性和可传递性。
translated by 谷歌翻译
监管基于深度学习的方法,产生医学图像分割的准确结果。但是,它们需要大量标记的数据集,并获得它们是一种艰苦的任务,需要临床专业知识。基于半/自我监督的学习方法通​​过利用未标记的数据以及有限的注释数据来解决此限制。最近的自我监督学习方法使用对比损失来从未标记的图像中学习良好的全球层面表示,并在像想象网那样的流行自然图像数据集上实现高性能。在诸如分段的像素级预测任务中,对于学习良好的本地级别表示以及全局表示来说至关重要,以实现更好的准确性。然而,现有的局部对比损失的方法的影响仍然是学习良好本地表现的限制,因为类似于随机增强和空间接近定义了类似和不同的局部区域;由于半/自我监督设置缺乏大规模专家注释,而不是基于当地地区的语义标签。在本文中,我们提出了局部对比损失,以便通过利用从未标记的图像的未标记图像的伪标签获得的语义标签信息来学习用于分割的良好像素级别特征。特别地,我们定义了建议的损失,以鼓励具有相同伪标签/标签的像素的类似表示,同时与数据集中的不同伪标签/标签的像素的表示。我们通过联合优化标记和未标记的集合和仅限于标记集的分割损失,通过联合优化拟议的对比损失来进行基于伪标签的自培训和培训网络。我们在三个公共心脏和前列腺数据集上进行了评估,并获得高分割性能。
translated by 谷歌翻译
深度学习的快速发展在分割方面取得了长足的进步,这是计算机视觉的基本任务之一。但是,当前的细分算法主要取决于像素级注释的可用性,这些注释通常昂贵,乏味且费力。为了减轻这一负担,过去几年见证了越来越多的关注,以建立标签高效,深度学习的细分算法。本文对标签有效的细分方法进行了全面的审查。为此,我们首先根据不同类型的弱标签提供的监督(包括没有监督,粗略监督,不完整的监督和嘈杂的监督和嘈杂的监督),首先开发出一种分类法来组织这些方法,并通过细分类型(包括语义细分)补充,实例分割和全景分割)。接下来,我们从统一的角度总结了现有的标签有效的细分方法,该方法讨论了一个重要的问题:如何弥合弱监督和密集预测之间的差距 - 当前的方法主要基于启发式先导,例如交叉像素相似性,跨标签约束,跨视图一致性,跨图像关系等。最后,我们分享了对标签有效深层细分的未来研究方向的看法。
translated by 谷歌翻译
弱监督的点云语义分割方法需要1 \%或更少的标签,希望实现与完全监督的方法几乎相同的性能,这些方法最近引起了广泛的研究关注。该框架中的一个典型解决方案是使用自我训练或伪标记来从点云本身挖掘监督,但忽略了图像中的关键信息。实际上,在激光雷达场景中广泛存在相机,而这种互补信息对于3D应用似乎非常重要。在本文中,我们提出了一种用于3D分割的新型交叉模式弱监督的方法,并结合了来自未标记图像的互补信息。基本上,我们设计了一个配备有效标签策略的双分支网络,以最大程度地发挥标签的力量,并直接实现2D到3D知识转移。之后,我们以期望最大(EM)的视角建立了一个跨模式的自我训练框架,该框架在伪标签估计和更新参数之间进行了迭代。在M-Step中,我们提出了一个跨模式关联学习,通过增强3D点和2D超级像素之间的周期矛盾性,从图像中挖掘互补的监督。在E-Step中,伪标签的自我校准机制被得出过滤噪声标签,从而为网络提供了更准确的标签,以进行全面训练。广泛的实验结果表明,我们的方法甚至优于最先进的竞争对手,而少于1 \%的主动选择注释。
translated by 谷歌翻译
本文提出了一个统一的神经网络结构,用于联合3D对象检测和点云分段。我们利用检测和分割标签的丰富监督,而不是使用其中一个。另外,基于广泛应用于3D场景和对象理解的隐式功能,提出了基于单级对象检测器的扩展。扩展分支从对象检测模块作为输入采用最终特征映射,并产生隐式功能,为其对应的体素中心产生每个点的语义分布。我们展示了我们在NUSCENES-LIDARSEG上的结构的表现,这是一个大型户外数据集。我们的解决方案在与对象检测解决方案相比,在3D对象检测和点云分割中实现了针对现有的方法的竞争结果。通过实验验证了所提出的方法的有效弱监管语义分割的能力。
translated by 谷歌翻译
在自主驾驶场景中,基于点云的主导云的3D对象检测器很大程度上依赖于大量准确标记的样品,但是,点云中的3D注释非常乏味,昂贵且耗时。为了减少对大量监督的依赖,已经提出了基于半监督的学习(SSL)方法。伪标记的方法通常用于SSL框架,但是,教师模型的低质量预测严重限制了其性能。在这项工作中,我们通过将教师模型增强到具有几种必要的设计的熟练培训模型,为半监督3D对象检测提出了一个新的伪标记框架。首先,为了改善伪标签的召回,提出了一个时空集合(Ste)模块来生成足够的种子盒。其次,为了提高召回框的精确度,基于群集的盒子投票(CBV)模块旨在从聚类的种子盒中获得汇总投票。这也消除了精致阈值选择伪标签的必要性。此外,为了减少训练期间错误的伪标记样本的负面影响,通过考虑智慧对比度学习(BCL)提出了软监督信号。在一次和Waymo数据集上验证了我们的模型的有效性。例如,一次,我们的方法将基线显着提高了9.51地图。此外,有了一半的注释,我们的模型在Waymo上的完整注释都优于Oracle模型。
translated by 谷歌翻译
手术场景细分对于促使机器人手术的认知援助至关重要。但是,以逐帧方式以像素为单位的注释视频是昂贵且耗时的。为了大大减轻标签负担,在这项工作中,我们从机器人手术视频中研究了半监督的场景细分,这实际上是必不可少的,但以前很少探索。我们考虑在等距采样下的临床上适当的注释情况。然后,我们提出了PGV-CL,这是一种新型的伪标签引导的跨视频对比学习方法,以增强场景分割。它有效地利用了未标记的数据来实现可信赖和全球模型的正则化,从而产生更具歧视性的特征表示。具体来说,对于可信赖的表示学习,我们建议合并伪标签以指导对选择,从而获得更可靠的代表对像素对比度。此外,我们将代表学习空间从以前的图像级扩展到交叉视频,该图像可以捕获全球语义以使学习过程受益。我们广泛评估了公共机器人手术数据集Edovis18和公共白内障数据集Cadis的方法。实验结果证明了我们方法的有效性,在不同的标签比下始终超过了最先进的半监督方法,甚至超过了10.1%标签的destovis18上的全面监督培训。
translated by 谷歌翻译
颅内动脉瘤现在是常见的,以及如何智能地检测它们在数字健康方面具有重要意义。虽然大多数现有的深度学习研究专注于医学图像的监督方式,但我们介绍了基于3D点云数据检测颅内动脉瘤的无监督方法。特别是,我们的方法由两个阶段组成:无监督的预训练和下游任务。至于前者,主要思想是将每个点云与其抖动的对应物配对并最大化它们的对应关系。然后,我们设计具有每个分支的编码器和后续公共投影头的双分支对比度网络。至于后者,我们为监督分类和分割培训设计简单网络。公共数据集(内部)的实验表明,我们的无监督方法比某些最先进的监督技术实现了可比或甚至更好的性能,并且在检测动脉瘤血管中最为突出。 ModelNet40上的实验还表明,我们的方法实现了90.79 \%的准确性,这优于现有的最先进的无监督模型。
translated by 谷歌翻译
旨在促进现实世界,不断发展和可扩展的自主驾驶系统,我们展示了一个大规模数据集,用于通过从原始数据学习来标准化不同自我监督和半监督方法的评估,这是第一和最大的数据集到期。现有的自主驱动系统严重依赖于“完善”视觉感知模型(即,检测)使用广泛的注释数据培训,以确保安全性。然而,在部署强大的自动驾驶系统时,精致地标记所有情景和环境的实例(即夜,极端天气,城市)是不现实的。最近的自我监督和半监督学习的推进激励,希望通过协作利用大规模未标记的数据和少数标记数据来学习强大的检测模型。现有数据集只提供少量数据或涵盖具有完整注释的有限域,妨碍大规模预训练模型的探索。在这里,我们发布了一个大型2D自主/半监控的对象检测数据集,用于自动驾驶,名为SODA10M,其中包含1000万个未标记的图像和标有6个代表对象类别的20K图像。为了提高多样性,在不同天气条件下的27833个驾驶时间内收集图像,32个不同城市的时期和位置场景。我们提供广泛的实验和对现有的流行自主/半监督方法深度分析,并在自动驾驶范围内给出一些有趣的调查结果。实验表明,SODA10M可以作为不同的自我监督学习方法作为有前途的预训练数据集,这在微调驾驶域中的不同下游任务(即检测,语义/实例分段)进行微调时提供了卓越的性能。更多信息可以参考https://soda-2d.github.io。
translated by 谷歌翻译
Semi-supervised learning (SSL) has achieved great success in leveraging a large amount of unlabeled data to learn a promising classifier. A popular approach is pseudo-labeling that generates pseudo labels only for those unlabeled data with high-confidence predictions. As for the low-confidence ones, existing methods often simply discard them because these unreliable pseudo labels may mislead the model. Nevertheless, we highlight that these data with low-confidence pseudo labels can be still beneficial to the training process. Specifically, although the class with the highest probability in the prediction is unreliable, we can assume that this sample is very unlikely to belong to the classes with the lowest probabilities. In this way, these data can be also very informative if we can effectively exploit these complementary labels, i.e., the classes that a sample does not belong to. Inspired by this, we propose a novel Contrastive Complementary Labeling (CCL) method that constructs a large number of reliable negative pairs based on the complementary labels and adopts contrastive learning to make use of all the unlabeled data. Extensive experiments demonstrate that CCL significantly improves the performance on top of existing methods. More critically, our CCL is particularly effective under the label-scarce settings. For example, we yield an improvement of 2.43% over FixMatch on CIFAR-10 only with 40 labeled data.
translated by 谷歌翻译
由于缺乏大规模标记的3D数据集,大多数3D神经网络都是从划痕训练。在本文中,我们通过利用来自丰富的2D数据集学习的2D网络来介绍一种新的3D预预测方法。我们提出了通过将像素级和点级别特征映射到同一嵌入空间中的对比度的像素到点知识转移来有效地利用2D信息。由于2D和3D网络之间的异构性质,我们介绍了后投影功能以对准2D和3D之间的功能以使转移成为可能。此外,我们设计了一个上采样功能投影层,以增加高级2D特征图的空间分辨率,这使得能够学习细粒度的3D表示。利用普雷累染的2D网络,所提出的预介绍过程不需要额外的2D或3D标记数据,进一步缓解了昂贵的3D数据注释成本。据我们所知,我们是第一个利用现有的2D培训的权重,以预先rain 3D深度神经网络。我们的密集实验表明,使用2D知识预订的3D模型可以通过各种真实世界3D下游任务进行3D网络的性能。
translated by 谷歌翻译