We focus on the continual learning problem where the tasks arrive sequentially and the aim is to perform well on the newly arrived task without performance degradation on the previously seen tasks. In contrast to the continual learning literature focusing on the centralized setting, we investigate the distributed estimation framework. We consider the well-established distributed learning algorithm \cocoa{}. We derive closed form expressions for the iterations for the overparametrized case. We illustrate the convergence and the error performance of the algorithm based on the over/under-parametrization of the problem. Our results show that depending on the problem dimensions and data generation assumptions, \cocoa{} can perform continual learning over a sequence of tasks, i.e., it can learn a new task without forgetting previously learned tasks, with access only to one task at a time.
translated by 谷歌翻译
机器学习中的一个重要问题是能够以顺序方式学习任务。如果有标准的一阶方法培训大多数模型忘记了在新任务上培训时忘记了先前学习的任务,这通常被称为灾难性遗忘。一种流行的克服遗忘方法是通过惩罚在以前任务上的模型来规范损失函数。例如,弹性重量整合(EWC)用二次形式正规,涉及基于过去数据的对角线矩阵构建。虽然EWC对于一些设置工作非常好,但即使在另外理想的条件下,如果对角线矩阵是先前任务的Hessian矩阵的近似近似,它也可以证明灾难性遗忘。我们提出了一种简单的方法来克服这一点:正规规范了与过去数据矩阵的草图草图的新任务的培训。这可以通过内存成本可提供克服灾难忘记线性模型和宽神经网络的灾难性忘记。本文的总体目标是在基于正规化的连续学习算法和内存成本下提供有关时的见解。
translated by 谷歌翻译
最近,模型 - 不可知的元学习(MAML)已经获得了巨大的关注。然而,MAML的随机优化仍然不成熟。 MAML的现有算法利用“剧集”思想,通过对每个迭代的每个采样任务进行采样和一些数据点来更新元模型。但是,它们不一定能够以恒定的小批量大小保证收敛,或者需要在每次迭代时处理大量任务,这对于持续学习或跨设备联合学习不可行,其中仅提供少量任务每次迭代或每轮。本文通过(i)提出了与消失收敛误差的有效的基于内存的随机算法提出了基于存储的基于存储器的随机算法,这只需要采样恒定数量的任务和恒定数量的每次迭代数据样本; (ii)提出基于通信的分布式内存基于存储器的MAML算法,用于跨设备(带客户端采样)和跨筒仓(无客户采样)设置中的个性化联合学习。理论结果显着改善了MAML的优化理论,实证结果也证实了理论。
translated by 谷歌翻译
尽管深度神经网络能够在各个领域中实现最先进的性能,但他们的培训通常需要对数据集的许多通行证进行迭代。但是,由于计算和内存约束和潜在的隐私问题,在数据到达流中的许多现实情况下,存储和访问所有数据都是不切实际的。在本文中,我们研究了一通学习的问题,其中模型是在未重新验证之前对数据进行依次到达数据的培训。通过越来越多参数化模型的使用,我们开发了正交递归拟合(ORFIT),这是一种用于一通学习的算法,旨在完全适合每个新数据点,同时在更改参数的方向上,导致对先前预测的最小变化参数数据点。通过这样做,我们在自适应过滤和机器学习中桥接了两种看似不同的算法,即递归最小二乘(RLS)算法和正交梯度下降(OGD)。我们的算法通过通过增量主组件分析(IPCA)利用流数据的结构来有效地使用内存。此外,我们表明,对于过度参数的线性模型,我们算法获得的参数矢量是随机梯度下降(SGD)在标准的多通用设置中收敛到的。最后,我们将结果推广到高度参数化模型的非线性设置,这与深度学习有关。我们的实验显示了与基准相比,提出的方法的有效性。
translated by 谷歌翻译
本文研究了在连续学习框架中使用分类网络的固定架构培训深度学习模型的优化算法的新设计。训练数据是非平稳的,非平稳性是由一系列不同的任务施加的。我们首先分析了一个仅在隔离的学习任务的深层模型,并在网络参数空间中识别一个区域,其中模型性能接近恢复的最佳。我们提供的经验证据表明该区域类似于沿收敛方向扩展的锥体。我们研究了融合后优化器轨迹的主要方向,并表明沿着一些顶级主要方向旅行可以迅速将参数带到锥体之外,但其余方向并非如此。我们认为,当参数被限制以保持在训练过程中迄今为止遇到的单个任务的相交中,可以缓解持续学习环境中的灾难性遗忘。基于此观察结果,我们介绍了我们的方向约束优化(DCO)方法,在每个任务中,我们引入一个线性自动编码器以近似其相应的顶部禁止主要方向。然后将它们以正规化术语的形式合并到损失函数中,以便在不忘记的情况下学习即将到来的任务。此外,为了随着任务数量的增加而控制内存的增长,我们提出了一种称为压缩DCO(DCO-comp)的算法的内存效率版本,该版本为存储所有自动编码器的固定大小分配了存储器。我们从经验上证明,与其他基于最新正规化的持续学习方法相比,我们的算法表现出色。
translated by 谷歌翻译
持续学习研究的主要重点领域是通过设计新算法对分布变化更强大的新算法来减轻神经网络中的“灾难性遗忘”问题。尽管持续学习文献的最新进展令人鼓舞,但我们对神经网络的特性有助于灾难性遗忘的理解仍然有限。为了解决这个问题,我们不关注持续的学习算法,而是在这项工作中专注于模型本身,并研究神经网络体系结构对灾难性遗忘的“宽度”的影响,并表明宽度在遗忘遗产方面具有出人意料的显着影响。为了解释这种效果,我们从各个角度研究网络的学习动力学,例如梯度正交性,稀疏性和懒惰的培训制度。我们提供了与不同架构和持续学习基准之间的经验结果一致的潜在解释。
translated by 谷歌翻译
已知应用于任务序列的标准梯度下降算法可在深层神经网络中产生灾难性遗忘。当对序列中的新任务进行培训时,该模型会在当前任务上更新其参数,从而忘记过去的知识。本文探讨了我们在有限环境中扩展任务数量的方案。这些方案由与重复数据的长期任务组成。我们表明,在这种情况下,随机梯度下降可以学习,进步并融合到根据现有文献需要持续学习算法的解决方案。换句话说,我们表明该模型在没有特定的记忆机制的情况下执行知识保留和积累。我们提出了一个新的实验框架,即Scole(缩放量表),以研究在潜在无限序列中的知识保留和算法的积累。为了探索此设置,我们对1,000个任务的序列进行了大量实验,以更好地了解这种新的设置家庭。我们还提出了对香草随机梯度下降的轻微修改,以促进这种情况下的持续学习。 SCOLE框架代表了对实用训练环境的良好模拟,并允许长序列研究收敛行为。我们的实验表明,在短方案上以前的结果不能总是推断为更长的场景。
translated by 谷歌翻译
We consider estimation under model misspecification where there is a model mismatch between the underlying system, which generates the data, and the model used during estimation. We propose a model misspecification framework which enables a joint treatment of the model misspecification types of having fake features as well as incorrect covariance assumptions on the unknowns and the noise. We present a decomposition of the output error into components that relate to different subsets of the model parameters corresponding to underlying, fake and missing features. Here, fake features are features which are included in the model but are not present in the underlying system. Under this framework, we characterize the estimation performance and reveal trade-offs between the number of samples, number of fake features, and the possibly incorrect noise level assumption. In contrast to existing work focusing on incorrect covariance assumptions or missing features, fake features is a central component of our framework. Our results show that fake features can significantly improve the estimation performance, even though they are not correlated with the features in the underlying system. In particular, we show that the estimation error can be decreased by including more fake features in the model, even to the point where the model is overparametrized, i.e., the model contains more unknowns than observations.
translated by 谷歌翻译
在线持续学习是一个充满挑战的学习方案,模型必须从非平稳的数据流中学习,其中每个样本只能看到一次。主要的挑战是在避免灾难性遗忘的同时逐步学习,即在从新数据中学习时忘记先前获得的知识的问题。在这种情况下,一种流行的解决方案是使用较小的内存来保留旧数据并随着时间的推移进行排练。不幸的是,由于内存尺寸有限,随着时间的推移,内存的质量会恶化。在本文中,我们提出了OLCGM,这是一种基于新型重放的持续学习策略,该策略使用知识冷凝技术连续压缩记忆并更好地利用其有限的尺寸。样品冷凝步骤压缩了旧样品,而不是像其他重播策略那样将其删除。结果,实验表明,每当与数据的复杂性相比,每当记忆预算受到限制,OLCGM都会提高与最先进的重播策略相比的最终准确性。
translated by 谷歌翻译
增量任务学习(ITL)是一个持续学习的类别,试图培训单个网络以进行多个任务(一个接一个),其中每个任务的培训数据仅在培训该任务期间可用。当神经网络接受较新的任务培训时,往往会忘记旧任务。该特性通常被称为灾难性遗忘。为了解决此问题,ITL方法使用情节内存,参数正则化,掩盖和修剪或可扩展的网络结构。在本文中,我们提出了一个基于低级别分解的新的增量任务学习框架。特别是,我们表示每一层的网络权重作为几个等级1矩阵的线性组合。为了更新新任务的网络,我们学习一个排名1(或低级别)矩阵,并将其添加到每一层的权重。我们还引入了一个其他选择器向量,该向量将不同的权重分配给对先前任务的低级矩阵。我们表明,就准确性和遗忘而言,我们的方法的表现比当前的最新方法更好。与基于情节的内存和基于面具的方法相比,我们的方法还提供了更好的内存效率。我们的代码将在https://github.com/csiplab/task-increment-rank-update.git上找到。
translated by 谷歌翻译
Two-level stochastic optimization formulations have become instrumental in a number of machine learning contexts such as continual learning, neural architecture search, adversarial learning, and hyperparameter tuning. Practical stochastic bilevel optimization problems become challenging in optimization or learning scenarios where the number of variables is high or there are constraints. In this paper, we introduce a bilevel stochastic gradient method for bilevel problems with lower-level constraints. We also present a comprehensive convergence theory that covers all inexact calculations of the adjoint gradient (also called hypergradient) and addresses both the lower-level unconstrained and constrained cases. To promote the use of bilevel optimization in large-scale learning, we introduce a practical bilevel stochastic gradient method (BSG-1) that does not require second-order derivatives and, in the lower-level unconstrained case, dismisses any system solves and matrix-vector products.
translated by 谷歌翻译
在本文中,我们研究了模型 - 不可知的元学习(MAML)算法的泛化特性,用于监督学习问题。我们专注于我们培训MAML模型超过$ M $任务的设置,每个都有$ n $数据点,并从两个视角表征其泛化错误:首先,我们假设测试时间的新任务是其中之一培训任务,我们表明,对于强烈凸的客观函数,预期的多余人口损失是由$ {\ mathcal {o}}(1 / mn)$的界限。其次,我们考虑MAML算法的概念任务的泛化,并表明产生的泛化误差取决于新任务的底层分布与培训过程中观察到的任务之间的总变化距离。我们的校对技术依赖于算法稳定性与算法的泛化界之间的连接。特别是,我们为元学习算法提出了一种新的稳定性定义,这使我们能够捕获每项任务的任务数量的任务数量的角色$ N $对MAML的泛化误差。
translated by 谷歌翻译
持续学习是一种学习范式,可以通过资源限制顺序学习任务,其中关键挑战是稳定性的难题,即同时具有稳定性来防止灾难性忘记旧任务和可很好地学习新任务的稳定性是不安的。 。在本文中,我们提出了一种新的持续学习方法,即先进的空空间(ADN),以平衡稳定性和可塑性,而无需存储以前任务的任何旧数据。具体而言,为了获得更好的稳定性,ADN会利用低级近似来获得新的空空间,并将梯度投射到空空间上,以防止干扰过去的任务。为了控制无效空间的产生,我们引入了不均匀的约束强度,以进一步减少遗忘。此外,我们提出了一种简单但有效的方法,即任务内蒸馏,以提高当前任务的性能。最后,从理论上讲,无效空间分别在塑性和稳定性中起关键作用。实验结果表明,与最先进的持续学习方法相比,所提出的方法可以实现更好的性能。
translated by 谷歌翻译
机器学习已开始在许多应用中发挥核心作用。这些应用程序中的许多应用程序通常还涉及由于设计约束(例如多元系统)或计算/隐私原因(例如,在智能手机数据上学习),这些数据集分布在多个计算设备/机器上。这样的应用程序通常需要以分散的方式执行学习任务,其中没有直接连接到所有节点的中央服务器。在现实世界中的分散设置中,由于设备故障,网络攻击等,节点容易出现未发现的故障,这可能会崩溃非稳固的学习算法。本文的重点是在发生拜占庭失败的节点的存在下对分散学习的鲁棒化。拜占庭故障模型允许故障节点任意偏离其预期行为,从而确保设计最健壮的算法的设计。但是,与分布式学习相反,对分散学习中拜占庭式的弹性的研究仍处于起步阶段。特别是,现有的拜占庭式分散学习方法要么不能很好地扩展到大规模的机器学习模型,要么缺乏统计收敛性可确保有助于表征其概括错误。在本文中,引入了一个可扩展的,拜占庭式的分散的机器学习框架,称为拜占庭的分散梯度下降(桥梁)。本文中还提供了强烈凸出问题和一类非凸问题的算法和统计收敛保证。此外,使用大规模的分散学习实验来确定桥梁框架是可扩展的,并且为拜占庭式弹性凸和非convex学习提供了竞争结果。
translated by 谷歌翻译
在梯度下降中,改变我们参数化的方式如何导致巨大的优化轨迹,从而引起令人惊讶的有意义的感应偏差:识别稀疏分类器或重建低级矩阵而无明确正规化。这种隐式正规化已经假设是深入学习良好概括的贡献因素。然而,自然梯度下降近似不变于Reparameterization,它始终遵循相同的轨迹并找到相同的最佳值。自然出现的问题:如果我们消除了参数化的角色,会发生什么,将找到哪个解决方案,发生了哪些新的属性?我们在逻辑损失和深层矩阵分解下,对深层线性网络进行自然梯度流动的行为。我们的一些发现扩展到非线性神经网络,具有足够但有限的参数化。我们证明存在学习问题,其中自然梯度下降失败概括,而具有正确架构的梯度下降则表现良好。
translated by 谷歌翻译
Emerging technologies and applications including Internet of Things (IoT), social networking, and crowd-sourcing generate large amounts of data at the network edge. Machine learning models are often built from the collected data, to enable the detection, classification, and prediction of future events. Due to bandwidth, storage, and privacy concerns, it is often impractical to send all the data to a centralized location. In this paper, we consider the problem of learning model parameters from data distributed across multiple edge nodes, without sending raw data to a centralized place. Our focus is on a generic class of machine learning models that are trained using gradientdescent based approaches. We analyze the convergence bound of distributed gradient descent from a theoretical point of view, based on which we propose a control algorithm that determines the best trade-off between local update and global parameter aggregation to minimize the loss function under a given resource budget. The performance of the proposed algorithm is evaluated via extensive experiments with real datasets, both on a networked prototype system and in a larger-scale simulated environment. The experimentation results show that our proposed approach performs near to the optimum with various machine learning models and different data distributions.
translated by 谷歌翻译
We introduce a conceptually simple and scalable framework for continual learning domains where tasks are learned sequentially. Our method is constant in the number of parameters and is designed to preserve performance on previously encountered tasks while accelerating learning progress on subsequent problems. This is achieved by training a network with two components: A knowledge base, capable of solving previously encountered problems, which is connected to an active column that is employed to efficiently learn the current task. After learning a new task, the active column is distilled into the knowledge base, taking care to protect any previously acquired skills. This cycle of active learning (progression) followed by consolidation (compression) requires no architecture growth, no access to or storing of previous data or tasks, and no task-specific parameters. We demonstrate the progress & compress approach on sequential classification of handwritten alphabets as well as two reinforcement learning domains: Atari games and 3D maze navigation.
translated by 谷歌翻译
Lack of performance when it comes to continual learning over non-stationary distributions of data remains a major challenge in scaling neural network learning to more human realistic settings. In this work we propose a new conceptualization of the continual learning problem in terms of a temporally symmetric trade-off between transfer and interference that can be optimized by enforcing gradient alignment across examples. We then propose a new algorithm, Meta-Experience Replay (MER), that directly exploits this view by combining experience replay with optimization based meta-learning. This method learns parameters that make interference based on future gradients less likely and transfer based on future gradients more likely. 1 We conduct experiments across continual lifelong supervised learning benchmarks and non-stationary reinforcement learning environments demonstrating that our approach consistently outperforms recently proposed baselines for continual learning. Our experiments show that the gap between the performance of MER and baseline algorithms grows both as the environment gets more non-stationary and as the fraction of the total experiences stored gets smaller.
translated by 谷歌翻译
分散和联合学习的关键挑战之一是设计算法,这些算法有效地处理跨代理商的高度异构数据分布。在本文中,我们在数据异质性下重新审视分散的随机梯度下降算法(D-SGD)的分析。我们在D-SGD的收敛速率上展示了新数量的关键作用,称为\ emph {邻居异质性}。通过结合通信拓扑结构和异质性,我们的分析阐明了这两个分散学习中这两个概念之间的相互作用较低。然后,我们认为邻里的异质性提供了一种自然标准,可以学习数据依赖性拓扑结构,以减少(甚至可以消除)数据异质性对D-SGD收敛时间的有害影响。对于与标签偏度分类的重要情况,我们制定了学习这样一个良好拓扑的问题,例如我们使用Frank-Wolfe算法解决的可拖动优化问题。如一组模拟和现实世界实验所示,我们的方法提供了一种设计稀疏拓扑的方法,可以在数据异质性下平衡D-SGD的收敛速度和D-SGD的触电沟通成本。
translated by 谷歌翻译
在线持续学习,尤其是在任务身份和任务边界不可用时,是一个挑战性的持续学习设置。一种代表性的在线持续学习方法是基于重播的方法,其中保留称为内存的重播缓冲区,以保留过去样本的一小部分,以克服灾难性的遗忘。当通过在线持续学习来解决时,大多数现有的基于重播的方法都集中在单标签问题上,其中数据流中的每个样本只有一个标签。但是,在在线持续学习环境中,多标签问题也可能发生,在线持续学习环境中,每个样本可能具有多个标签。在使用多标签样本的在线设置中,数据流中的类分布通常是高度不平衡的,并且在内存中控制类别的分配是一项挑战课程。但是,内存中的课程分布对于基于重播的内存至关重要,以获得良好的性能,尤其是当数据流中的类分布高度不平衡时。在本文中,我们提出了一种简单但有效的方法,称为多标签在线持续学习,称为内存中的班级分布(OCDM)。 OCDM将内存更新机制制定为优化问题,并通过解决此问题来更新内存。在两个广泛使用的多标签数据集上的实验表明,OCDM可以很好地控制内存中的类分布,并且可以胜过其他最先进的方法。
translated by 谷歌翻译