Automatic speech recognition research focuses on training and evaluating on static datasets. Yet, as speech models are increasingly deployed on personal devices, such models encounter user-specific distributional shifts. To simulate this real-world scenario, we introduce LibriContinual, a continual learning benchmark for speaker-specific domain adaptation derived from LibriVox audiobooks, with data corresponding to 118 individual speakers and 6 train splits per speaker of different sizes. Additionally, current speech recognition models and continual learning algorithms are not optimized to be compute-efficient. We adapt a general-purpose training algorithm NetAug for ASR and create a novel Conformer variant called the DisConformer (Disentangled Conformer). This algorithm produces ASR models consisting of a frozen 'core' network for general-purpose use and several tunable 'augment' networks for speaker-specific tuning. Using such models, we propose a novel compute-efficient continual learning algorithm called DisentangledCL. Our experiments show that the DisConformer models significantly outperform baselines on general ASR i.e. LibriSpeech (15.58% rel. WER on test-other). On speaker-specific LibriContinual they significantly outperform trainable-parameter-matched baselines (by 20.65% rel. WER on test) and even match fully finetuned baselines in some settings.
translated by 谷歌翻译
演讲者的适应性对于建立强大的自动语音识别(ASR)系统很重要。在这项工作中,我们根据基于配置符号的声学模型(AM)在300H数据集中的功能空间方法研究了扬声器自适应训练(SAT)的各种方法。我们提出了一种称为加权简单添加的方法,该方法将加权的说话者信息向量添加到构象异构体AM的多头自发动模块的输入中。使用此方法用于SAT,我们在HUB5'00和HUB5'01的Callhome部分方面取得了3.5%和4.5%的相对改善。此外,我们以先前的作品为基础,在此基础上,我们为基于构象异构体的混合动力AM提出了一种新颖的竞争培训配方。我们扩展并改善了此食谱,在该配方中,我们在打电筒300H HUB5'00数据集上的单词误差(WER)方面取得了11%的相对改善。我们还通过将参数总数减少34%,从而使该配方有效。
translated by 谷歌翻译
最近,先驱工作发现,演讲预训练模型可以解决全堆栈语音处理任务,因为该模型利用底层学习扬声器相关信息和顶层以编码与内容相关的信息。由于网络容量有限,我们认为如果模型专用于音频内容信息学习,则可以进一步提高语音识别性能。为此,我们向自我监督学习(ILS-SSL)提出中间层监督,这将模型通过在中间层上添加额外的SSL丢失来尽可能地专注于内容信息。 LibrisPeech测试 - 其他集合的实验表明,我们的方法显着优于Hubert,这实现了基数/大型模型的W / O语言模型设置的相对字错误率降低了23.5%/ 11.6%。详细分析显示我们模型的底层与拼音单元具有更好的相关性,这与我们的直觉一致,并解释了我们对ASR的方法的成功。
translated by 谷歌翻译
在移动设备上的语音模型(在设备个性化)上的个性化是一个活跃的研究领域,但是通常,移动设备比配对的音频文本数据具有更多的仅文本数据。我们探索培训有关仅文本数据的个性化语言模型,该模型在推理期间用于提高该用户的语音识别性能。我们在一个用户群体的Librispeech语料库上进行了实验,并为Gutenberg Project的每个用户提供了个性化的文本数据。我们发布此特定于用户的LibrisPeech(UserLibri)数据集,以帮助未来的个性化研究。LibrisPeech音频转录对分为来自测试清洁数据集的55个用户,另外有52位用户。我们能够降低流媒体和非启动模型中的两个集合中每个用户的平均单词错误率,包括在流式传输时为更难的测试用户组的2.5改进。
translated by 谷歌翻译
端到端模型在自动语音识别中快速更换传统的混合模型。变压器,基于机器翻译任务的自我关注的序列到序列模型,在用于自动语音识别时已经给出了有希望的结果。本文探讨了在培训基于变压器的模型的同时在编码器输入时结合扬声器信息的不同方式,以提高其语音识别性能。我们以每个扬声器的扬声器嵌入形式呈现扬声器信息。我们使用两种类型的扬声器嵌入进行实验:在我们以前的工作中提出的X-Vectors和新颖的S-Vectors。我们向两个数据集报告结果a)肉kel讲座数据库和b)librispeech 500小时分割。NPTEL是一个开源电子学习门户,提供来自印度顶级大学的讲座。通过我们将扬声器嵌入的方法集成到模型中,我们通过基线获得了基线的错误率的改进。
translated by 谷歌翻译
将自动语音识别(ASR)模型适应新域导致原始域上的性能恶化,这是一种被称为灾难性忘记(CF)的现象。即使是单声道的ASR模型也不能扩展到新的口音,方言,主题等而不遭受CF,使得它们无法不断增强,而无需存储所有过去的数据。幸运的是,可以使用持续的学习(CL)方法,其旨在在克服CF的同时实现连续适应。在本文中,我们为端到端ASR实现了广泛的CL方法,并测试了它们在四个新任务中扩展单格式混合CTC变压器模型的能力。我们发现最好的CL方法关闭微调模型(下限)和在所有任务(上限)上培训的模型之间的差距超过40%,同时只需要访问原始数据的0.6%。
translated by 谷歌翻译
通过利用变形金刚捕获基于内容的全球互动和卷积神经网络对本地特征的利用,Condormer在自动语音识别(ASR)方面取得了令人印象深刻的结果。在构象异构体中,两个具有一半剩余连接的马卡龙状进料层将多头的自我注意和卷积模块夹在一起,然后是后层的归一化。我们在两个方向上提高了构象异构器的长序列能力,\ emph {sparser}和\ emph {更深层次}。我们使用$ \ Mathcal {o}(l \ text {log} l)$在时间复杂性和内存使用情况下调整稀疏的自我发挥机制。在执行剩余连接时,将使用深层的归一化策略,以确保我们对一百级构象体块的培训。在日本CSJ-500H数据集上,这种深稀疏的构象异构体分别达到5.52 \%,4.03 \%和4.50 \%在三个评估集上和4.16 \%,2.84 \%\%和3.20 \%时,当结合五个深度稀疏的稀疏配置符号时从12到16、17、50,最后100个编码器层的变体。
translated by 谷歌翻译
持续学习,也称为终身学习,旨在在可用的新数据中不断学习。尽管对自动语音识别中持续学习的先前研究集中在多个不同语音识别任务中的模型的适应上,但在本文中,我们为\ textit {在线持续学习}的实验设置提供了一种自动语音识别单个任务的设置。特别是关注同一任务的其他培训数据随着时间的推移而逐步可用的情况,我们证明了使用在线梯度情节内存(GEM)方法执行增量模型更新到端到端语音识别模型的有效性。此外,我们表明,通过在线持续学习和选择性抽样策略,我们可以保持准确性,类似于从头开始进行模型,同时需要大大降低计算成本。我们还通过自学学习(SSL)功能验证了我们的方法。
translated by 谷歌翻译
通过共享数据集和基准,已经促进了语音处理的进展。历史上,这些都集中在自动语音识别(ASR),扬声器标识或其他较低级别的任务上。兴趣在更高层次的口语中越来越多,理解任务,包括使用端到端模型,但是此类任务的注释数据集较少。与此同时,最近的工作显示了预先培训通用表示的可能性,然后使用相对较少标记的数据进行微调的多个任务。我们建议为口语语言理解(屠宰)创建一套基准任务,由有限尺寸标记的培训集和相应的评估集组成。该资源将允许研究界跟踪进度,评估高级任务的预先接受预期的表示,并研究开放的问题,例如管道与端到端方法的实用性。我们介绍了雪橇基准套件的第一阶段,包括指定实体识别,情感分析和相应数据集上的ASR。我们专注于自然产生的(未读取或综合)语音和自由可用的数据集。我们为VoxceReb和Voxpopuli数据集的子集提供新的转录和注释,基线模型的评估指标和结果,以及重现基线的开源工具包,并评估新模型。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
交叉语言语音适应旨在解决利用多种丰富资源语言来构建低资源目标语言的模型的问题。由于低资源语言具有有限的培训数据,语音识别模型可以容易地过度装备。在本文中,我们建议使用适配器来研究多种适配器的性能,用于参数有效的交叉语音语音适应。基于我们以前的MetaAdapter,隐含地利用适配器,我们提出了一种名为SimAdapter的新算法,用于从Adapters明确学习知识。我们的算法利用了可以轻松集成到变压器结构中的适配器.METAADAPTER利用元学习将一般知识从训练数据转移到测试语言。 SimAdapter旨在使用适配器微调期间了解源语言与目标语言之间的相似性。我们在公共语音数据集中对五种低资源语言进行广泛的实验。结果表明,与强大的全型微调基线相比,我们的MetaAdapter和SimAdapter方法可以将WER减小2.98%和2.55%,只有2.5%和15.5%的培训参数。此外,我们还表明这两种新型算法可以集成,以便更好的性能,相对减少高达3.55%。
translated by 谷歌翻译
We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. 1 1 Code and models are available at https://github.com/pytorch/fairseq Preprint. Under review.
translated by 谷歌翻译
已经证明了深度学习技术在各种任务中有效,特别是在语音识别系统的发展中,即旨在以一系列写词中的音频句子转录音频句子的系统。尽管该地区进展,但语音识别仍然可以被认为是困难的,特别是对于缺乏可用数据的语言,例如巴西葡萄牙语(BP)。从这个意义上讲,这项工作介绍了仅使用打开可用的音频数据的公共自动语音识别(ASR)系统的开发,从Wav2Vec 2.0 XLSR-53模型的微调,在许多语言中,通过BP数据进行了多种。最终模型在7个不同的数据集中呈现12.4%的平均误差率(在应用语言模型时10.5%)。根据我们的知识,这是开放ASR系统中BP的最佳结果。
translated by 谷歌翻译
Modern speech recognition systems exhibits rapid performance degradation under domain shift. This issue is especially prevalent in data-scarce settings, such as low-resource languages, where diversity of training data is limited. In this work we propose M2DS2, a simple and sample-efficient finetuning strategy for large pretrained speech models, based on mixed source and target domain self-supervision. We find that including source domain self-supervision stabilizes training and avoids mode collapse of the latent representations. For evaluation, we collect HParl, a $120$ hour speech corpus for Greek, consisting of plenary sessions in the Greek Parliament. We merge HParl with two popular Greek corpora to create GREC-MD, a test-bed for multi-domain evaluation of Greek ASR systems. In our experiments we find that, while other Unsupervised Domain Adaptation baselines fail in this resource-constrained environment, M2DS2 yields significant improvements for cross-domain adaptation, even when a only a few hours of in-domain audio are available. When we relax the problem in a weakly supervised setting, we find that independent adaptation for audio using M2DS2 and language using simple LM augmentation techniques is particularly effective, yielding word error rates comparable to the fully supervised baselines.
translated by 谷歌翻译
混合动力和端到端(E2E)自动语音识别(ASR)系统之间的基本建模差异在其中创造了巨大的多样性和互补性。本文研究了混合TDNN和构型E2E ASR系统的基于多通的逆转和交叉适应系统组合方法。在多通恢复中,最先进的混合动力LF-MMI训练有素的CNN-TDNN系统具有速度扰动,规格和贝叶斯学习隐藏单元供款(LHUC)扬声器的适应器,以在被恢复之前产生初始的N-tesk输出由扬声器适应构象异构体系统,使用2向跨系统得分插值。在交叉适应中,混合CNN-TDNN系统适用于构象异构体系统的1好的输出,反之亦然。在300小时的总机语料库上进行的实验表明,使用两种系统组合方法中的任何一个得出的组合系统都超过了单个系统。在NIST HUB5'00,RT03和RT03和RT02评估数据。
translated by 谷歌翻译
最近提出的符合者架构已成功用于实现在不同数据集上实现最先进性能的端到端自动语音识别(ASR)架构。为了我们的最佳知识,没有研究使用适用物声学模型对混合ASR的影响。在本文中,我们展示并评估了竞争的基于统一体的混合模型训练配方。我们研究了不同的培训方面和方法,以提高字差率以及提高训练速度。我们应用时间下采样方法以实现有效的培训,并使用转换卷积再次上置输出序列。我们在交换机300H数据集中进行实验,与其他架构相比,我们的符合子的混合模型实现了竞争力。它在Hub5'01测试集上概括并显着优于BLSTM的混合模型。
translated by 谷歌翻译
联合学习(FL)启用了分布式系统中用户设备(客户端)上的最新自动语音识别(ASR)模型,从而阻止将原始用户数据传输到中央服务器。 ASR实用采用实践采用面临的主要挑战是在客户身上获得地面真相标签。现有的方法依靠客户手动抄录演讲,这对于获得大型培训语料库是不切实际的。一个有希望的替代方法是使用半/自制的学习方法来利用未标记的用户数据。为此,我们提出了Fednst,这是一种使用私人和未标记的用户数据训练分布式ASR模型的新颖方法。我们探索Fednst的各个方面,例如具有不同比例的标记和未标记数据的培训模型,并评估1173个模拟客户端的建议方法。在LibrisPeech上评估Fednst,其中960个小时的语音数据被平均分为服务器(标签)和客户端(未标记)数据,显示了仅对服务器数据训练的监督基线,相对单词错误率降低}(WERR)22.5%。
translated by 谷歌翻译
增量学习是一种范式,可以通过流数据大规模构建模型构建和更新。对于端到端的自动语音识别(ASR)任务,缺乏人类注释的标签,以及需要保留模型建设政策的隐私政策,这使其成为艰巨的挑战。受这些挑战的激励,在本文中,我们使用基于云的框架为生产系统展示了从隐私保存自动语音识别(ILASR)的增量学习中的见解。我们的意思是,通过保留隐私性,对没有人类注释的短暂数据使用。该系统是用于增量/持续学习的生产LevelAsASR模型的一步,该模型提供了接近实时测试床,以在云中进行端到端ASR实验,同时遵守保留隐私的政策。我们表明,即使在没有人类注释的标签的情况下,拟议的系统也可以在六个月的新时间内显着改善生产模型(3%),而在增量学习中,较弱的监督和大批量大小。在新时期,这种改进比测试集的新单词和短语相比为20%。我们在ASR的同时进一步探讨了拥有有效的教师模型和使用大批量大小的实用性的同时,以保护隐私的增量方式展示了模型构建的有效性。
translated by 谷歌翻译
大规模的语音自我监督学习(SSL)已经出现到语音处理的主要领域,但是,由于其巨大规模而引起的计算成本问题是对学术界的高障碍。此外,语音SSL模型的现有蒸馏技术通过减少层来压缩模型,从而在语言模式识别任务(例如音素识别(PR))中引起性能降解。在本文中,我们提出了Fithubert,它几乎在几乎所有模型组件中都使尺寸较薄,并且与先前的语音SSL蒸馏作品相比,层层更深。此外,我们采用缩短时间来加快推理时间,并提出一种基于提示的蒸馏方法,以减少性能降解。与休伯特相比,我们的方法将模型降低到23.8%,推理时间为35.9%。此外,我们在优越的基准上达到了12.1%的单词错误率和13.3%的音素错误率,这比先前的工作优越。
translated by 谷歌翻译
言语分离的许多最近进步主要针对具有高重叠程度的短音频话语的合成混合物。这些数据集与真实的会话数据显着不同,因此,在这些数据集上培训和评估的模型不会概括到真实的会话方案。使用大多数这些模型用于长形式语音的另一个问题是由于时间频率掩模或置换不变训练(PIT)损耗的无监督聚类,因此是分离的语音段的非明确顺序。这导致准确地缝合用于自动语音识别(ASR)的下游任务的均匀扬声器段。在本文中,我们提出了一种扬声器调节分离器,在直接从混合信号中提取的扬声器嵌入物上训练。我们使用定向丢失训练此模型,该丢失调节分离的段的顺序。使用此模型,我们对真实会话数据的单词错误率(WER)进行了重大改进,而无需额外的重新拼接步骤。
translated by 谷歌翻译