最近提出的符合者架构已成功用于实现在不同数据集上实现最先进性能的端到端自动语音识别(ASR)架构。为了我们的最佳知识,没有研究使用适用物声学模型对混合ASR的影响。在本文中,我们展示并评估了竞争的基于统一体的混合模型训练配方。我们研究了不同的培训方面和方法,以提高字差率以及提高训练速度。我们应用时间下采样方法以实现有效的培训,并使用转换卷积再次上置输出序列。我们在交换机300H数据集中进行实验,与其他架构相比,我们的符合子的混合模型实现了竞争力。它在Hub5'01测试集上概括并显着优于BLSTM的混合模型。
translated by 谷歌翻译
演讲者的适应性对于建立强大的自动语音识别(ASR)系统很重要。在这项工作中,我们根据基于配置符号的声学模型(AM)在300H数据集中的功能空间方法研究了扬声器自适应训练(SAT)的各种方法。我们提出了一种称为加权简单添加的方法,该方法将加权的说话者信息向量添加到构象异构体AM的多头自发动模块的输入中。使用此方法用于SAT,我们在HUB5'00和HUB5'01的Callhome部分方面取得了3.5%和4.5%的相对改善。此外,我们以先前的作品为基础,在此基础上,我们为基于构象异构体的混合动力AM提出了一种新颖的竞争培训配方。我们扩展并改善了此食谱,在该配方中,我们在打电筒300H HUB5'00数据集上的单词误差(WER)方面取得了11%的相对改善。我们还通过将参数总数减少34%,从而使该配方有效。
translated by 谷歌翻译
Recently Transformer and Convolution neural network (CNN) based models have shown promising results in Automatic Speech Recognition (ASR), outperforming Recurrent neural networks (RNNs). Transformer models are good at capturing content-based global interactions, while CNNs exploit local features effectively. In this work, we achieve the best of both worlds by studying how to combine convolution neural networks and transformers to model both local and global dependencies of an audio sequence in a parameter-efficient way. To this regard, we propose the convolution-augmented transformer for speech recognition, named Conformer. Conformer significantly outperforms the previous Transformer and CNN based models achieving state-of-the-art accuracies. On the widely used LibriSpeech benchmark, our model achieves WER of 2.1%/4.3% without using a language model and 1.9%/3.9% with an external language model on test/testother. We also observe competitive performance of 2.7%/6.3% with a small model of only 10M parameters.
translated by 谷歌翻译
现代ASR体系结构的优化是最高的优先任务之一,因为它为模型培训和推理节省了许多计算资源。该工作提出了一种基于标准构象模型的新的UCONV-CONFORM-FORM-FORMENTERTURE结构,该模型将输入序列长度始终减少16次,从而加快了中间层的工作。为了解决时间维度的大幅减少解决收敛问题,我们使用与U-NET体系结构相似的UP抽样块,以确保正确的CTC损耗计算并稳定网络训练。UCONV-CONFORMENTER架构在训练和推理方面似乎不仅更快,而且与基线构象异构体相比,它的表现更好。我们最佳的UCONV-CONFORNER模型分别在CPU和GPU上显示了40.3%的时期训练时间缩短,47.8%和23.5%的推理加速度。librispeech test_clean和test_other上的相对WER降低了7.3%和9.2%。
translated by 谷歌翻译
作为语音识别的最流行的序列建模方法之一,RNN-Transducer通过越来越复杂的神经网络模型,以增长的规模和增加训练时代的增长,实现了不断发展的性能。尽管强大的计算资源似乎是培训卓越模型的先决条件,但我们试图通过仔细设计更有效的培训管道来克服它。在这项工作中,我们提出了一条高效的三阶段渐进式训练管道,以在合理的短时间内从头开始建立具有非常有限的计算资源的高效神经传感器模型。每个阶段的有效性在LibrisPeech和Convebobly Corpora上都经过实验验证。拟议的管道能够在短短2-3周内以单个GPU接近最先进的性能来训练换能器模型。我们最好的构型传感器在Librispeech测试中获得4.1%的速度,仅使用35个训练时代。
translated by 谷歌翻译
最近,基于注意的编码器 - 解码器(AED)模型对多个任务的端到端自动语音识别(ASR)显示了高性能。在此类模型中解决了过度控制,本文介绍了轻松关注的概念,这是一种简单地逐渐注入对训练期间对编码器 - 解码器注意重量的统一分配,其易于用两行代码实现。我们调查轻松关注跨不同AED模型架构和两个突出的ASR任务,华尔街日志(WSJ)和LibRisPeech的影响。我们发现,在用外部语言模型解码时,随着宽松的注意力训练的变压器始终如一地始终如一地遵循标准基线模型。在WSJ中,我们为基于变压器的端到端语音识别设置了一个新的基准,以3.65%的单词错误率,最优于13.1%的相对状态,同时仅引入单个HyperParameter。
translated by 谷歌翻译
最近,卷积增强的变压器(构象异构体)在自动语音识别(ASR)中显示出令人鼓舞的结果,表现优于先前发表的最佳变压器传感器。在这项工作中,我们认为编码器和解码器中每个块的输出信息并不完全包容,换句话说,它们的输出信息可能是互补的。我们研究如何以参数效率的方式利用每个块的互补信息,并且可以预期这可能会导致更强的性能。因此,我们提出了刻板的变压器以进行语音识别,名为BlockFormer。我们已经实现了两个块集合方法:块输出的基本加权总和(基本WSBO),以及挤压和激气模块到块输出的加权总和(SE-WSBO)。实验已经证明,阻滞剂在Aishell-1上大大优于基于最新的构象模型,我们的模型在不使用语言模型的情况下达到了4.35 \%的CER,并且在4.10 \%上具有外部语言模型的4.10 \%测试集。
translated by 谷歌翻译
事实证明,构象异构体在许多语音处理任务中都是有效的。它结合了使用卷积和使用自我注意的全球依赖性提取本地依赖的好处。受此启发,我们提出了一个更灵活,可解释和可自定义的编码器替代方案,分支机构,并在端到端语音处理中对各种远程依赖关系进行建模。在每个编码器层中,一个分支都采用自我注意事项或其变体来捕获远程依赖性,而另一个分支则利用带有卷积门控(CGMLP)的MLP模块来提取局部关系。我们对几种语音识别和口语理解基准进行实验。结果表明,我们的模型优于变压器和CGMLP。它还与构象异构体获得的最先进结果相匹配。此外,由于两分支结构,我们展示了减少计算的各种策略,包括在单个训练有素的模型中具有可变的推理复杂性的能力。合并分支的权重表明如何在不同层中使用本地和全球依赖性,从而使模型设计受益。
translated by 谷歌翻译
最先进的编码器模型(例如,用于机器翻译(MT)或语音识别(ASR))作为原子单元构造并端到端训练。没有其他模型的任何组件都无法(重新)使用。我们描述了Legonn,这是一种使用解码器模块构建编码器架构的过程,可以在各种MT和ASR任务中重复使用,而无需进行任何微调。为了实现可重复性,每个编码器和解码器模块之间的界面都基于模型设计器预先定义的离散词汇,将其接地到边缘分布序列。我们提出了两种摄入这些边缘的方法。一个是可区分的,可以使整个网络的梯度流动,另一个是梯度分离的。为了使MT任务之间的解码器模块的可移植性用于不同的源语言和其他任务(例如ASR),我们引入了一种模态不可思议的编码器,该模态编码器由长度控制机制组成,以动态调整编码器的输出长度,以匹配预期的输入长度范围的范围预训练的解码器。我们提出了几项实验来证明Legonn模型的有效性:可以重复使用德国英语(DE-EN)MT任务的训练有素的语言解码器模块,而没有对Europarl English ASR和ROMANIAN-ENGLISH进行微调(RO)(RO)(RO)(RO) -en)MT任务以匹配或击败相应的基线模型。当针对数千个更新的目标任务进行微调时,我们的Legonn模型将RO-EN MT任务提高了1.5个BLEU点,并为Europarl ASR任务降低了12.5%的相对减少。此外,为了显示其可扩展性,我们从三个模块中构成了一个legonn ASR模型 - 每个模块都在三个不同数据集的不同端到端训练的模型中学习 - 将降低的减少降低到19.5%。
translated by 谷歌翻译
通过利用变形金刚捕获基于内容的全球互动和卷积神经网络对本地特征的利用,Condormer在自动语音识别(ASR)方面取得了令人印象深刻的结果。在构象异构体中,两个具有一半剩余连接的马卡龙状进料层将多头的自我注意和卷积模块夹在一起,然后是后层的归一化。我们在两个方向上提高了构象异构器的长序列能力,\ emph {sparser}和\ emph {更深层次}。我们使用$ \ Mathcal {o}(l \ text {log} l)$在时间复杂性和内存使用情况下调整稀疏的自我发挥机制。在执行剩余连接时,将使用深层的归一化策略,以确保我们对一百级构象体块的培训。在日本CSJ-500H数据集上,这种深稀疏的构象异构体分别达到5.52 \%,4.03 \%和4.50 \%在三个评估集上和4.16 \%,2.84 \%\%和3.20 \%时,当结合五个深度稀疏的稀疏配置符号时从12到16、17、50,最后100个编码器层的变体。
translated by 谷歌翻译
知识蒸馏(KD),最称为模型压缩的有效方法,旨在将更大的网络(教师)的知识转移到更小的网络(学生)。传统的KD方法通常采用以监督方式培训的教师模型,其中输出标签仅作为目标处理。我们进一步扩展了这一受监督方案,我们为KD,即Oracle老师推出了一种新型的教师模型,它利用源输入和输出标签的嵌入来提取更准确的知识来转移到学生。所提出的模型遵循变压器网络的编码器解码器注意结构,这允许模型从输出标签上参加相关信息。在三种不同的序列学习任务中进行了广泛的实验:语音识别,场景文本识别和机器翻译。从实验结果来看,我们经验证明,拟议的模型在这些任务中改善了学生,同时在教师模型的培训时间内实现了相当大的速度。
translated by 谷歌翻译
专家(MOE)的稀疏门控混合物可以用少量计算复杂性来放大网络容量。在这项工作中,我们调查多语言自动语音识别(ASR)网络如何用简单的路由算法进行缩放,以便实现更好的准确性。更具体地,我们将稀疏门的MOE技术应用于两种网络:序列到序列变压器(S2S-T)和变压器换能器(T-T)。我们通过一组关于多语言数据的一组ASR实验证明了MOE网络可以分别使用S2S-T和T-T将相对字误差率降低16.5 \%和4.7 \%。此外,我们在各种条件下彻底调查了MOE对T-T架构上的T-T架构的影响:流模式,非流模式,使用语言ID和带有MOE的标签解码器。
translated by 谷歌翻译
混合动力和端到端(E2E)自动语音识别(ASR)系统之间的基本建模差异在其中创造了巨大的多样性和互补性。本文研究了混合TDNN和构型E2E ASR系统的基于多通的逆转和交叉适应系统组合方法。在多通恢复中,最先进的混合动力LF-MMI训练有素的CNN-TDNN系统具有速度扰动,规格和贝叶斯学习隐藏单元供款(LHUC)扬声器的适应器,以在被恢复之前产生初始的N-tesk输出由扬声器适应构象异构体系统,使用2向跨系统得分插值。在交叉适应中,混合CNN-TDNN系统适用于构象异构体系统的1好的输出,反之亦然。在300小时的总机语料库上进行的实验表明,使用两种系统组合方法中的任何一个得出的组合系统都超过了单个系统。在NIST HUB5'00,RT03和RT03和RT02评估数据。
translated by 谷歌翻译
Citrinet是基于端到端卷积连接派时间分类(CTC)自动语音识别(ASR)模型。为了捕获本地和全球上下文信息,Citrinet中使用了1D时间通道可分开的卷积与子词编码和挤压和兴奋(SE)的结合(SE),使整个体系结构与23个块和235个卷积层一样深和46个线性层。这种纯净的卷积和深度建筑使得critrinet在收敛时相对较慢。在本文中,我们建议在Citrinet块中的卷积模块中引入多头关注,同时保持SE模块和残留模块不变。为了加速加速,我们在每个注意力增强的Citrinet块中删除了8个卷积层,并将23个块减少到13个。日本CSJ-500H和Magic-1600h的实验表明,注意力增强的Citrinet具有较少的层和块,并更快地将其构图和嵌段。比(1)Citrinet具有80 \%训练时间的CITRINET,并且具有40 \%训练时间和29.8%型号的构象异构体。
translated by 谷歌翻译
大规模的语音自我监督学习(SSL)已经出现到语音处理的主要领域,但是,由于其巨大规模而引起的计算成本问题是对学术界的高障碍。此外,语音SSL模型的现有蒸馏技术通过减少层来压缩模型,从而在语言模式识别任务(例如音素识别(PR))中引起性能降解。在本文中,我们提出了Fithubert,它几乎在几乎所有模型组件中都使尺寸较薄,并且与先前的语音SSL蒸馏作品相比,层层更深。此外,我们采用缩短时间来加快推理时间,并提出一种基于提示的蒸馏方法,以减少性能降解。与休伯特相比,我们的方法将模型降低到23.8%,推理时间为35.9%。此外,我们在优越的基准上达到了12.1%的单词错误率和13.3%的音素错误率,这比先前的工作优越。
translated by 谷歌翻译
手写的文本识别问题是由计算机视觉社区的研究人员广泛研究的,因为它的改进和适用于日常生活的范围,它是模式识别的子域。自从过去几十年以来,基于神经网络的系统的计算能力提高了计算能力,因此有助于提供最新的手写文本识别器。在同一方向上,我们采用了两个最先进的神经网络系统,并将注意力机制合并在一起。注意技术已被广泛用于神经机器翻译和自动语音识别的领域,现在正在文本识别域中实现。在这项研究中,我们能够在IAM数据集上达到4.15%的字符错误率和9.72%的单词错误率,7.07%的字符错误率和GW数据集的16.14%单词错误率与现有的Flor合并后,GW数据集的单词错误率等。建筑学。为了进一步分析,我们还使用了类似于Shi等人的系统。具有贪婪解码器的神经网络系统,观察到基本模型的字符错误率提高了23.27%。
translated by 谷歌翻译
尽管变形金刚及其变体构象体在语音识别方面表现出了有希望的表现,但参数化的属性在训练和推理过程中导致了很大的记忆成本。一些作品使用跨层重量分享来减少模型的参数。但是,不可避免的能力损失会损害模型性能。为了解决这个问题,本文提出了通过共享稀疏门控专家的参数效率构象异构体。具体而言,我们使用稀疏门控的专家(MOE)来扩展构型块的容量而不增加计算。然后,共享分组构象块的参数,以减少参数的数量。接下来,为了确保具有不同级别适应表示的灵活性的共享块,我们会单独设计MOE路由器和标准化。此外,我们使用知识蒸馏来进一步提高性能。实验结果表明,与全参数模型相比,所提出的模型用编码器的1/3来实现竞争性能。
translated by 谷歌翻译
最近,先驱工作发现,演讲预训练模型可以解决全堆栈语音处理任务,因为该模型利用底层学习扬声器相关信息和顶层以编码与内容相关的信息。由于网络容量有限,我们认为如果模型专用于音频内容信息学习,则可以进一步提高语音识别性能。为此,我们向自我监督学习(ILS-SSL)提出中间层监督,这将模型通过在中间层上添加额外的SSL丢失来尽可能地专注于内容信息。 LibrisPeech测试 - 其他集合的实验表明,我们的方法显着优于Hubert,这实现了基数/大型模型的W / O语言模型设置的相对字错误率降低了23.5%/ 11.6%。详细分析显示我们模型的底层与拼音单元具有更好的相关性,这与我们的直觉一致,并解释了我们对ASR的方法的成功。
translated by 谷歌翻译
基于全注意力的变压器体系结构的强大建模能力通常会导致过度拟合,并且 - 对于自然语言处理任务,导致自动回归变压器解码器中隐式学习的内部语言模型,使外部语言模型的集成变得复杂。在本文中,我们探索了放松的注意力,对注意力的重量进行了简单易于实现的平滑平滑,从编码器。其次,我们表明它自然支持外部语言模型的整合,因为它通过放松解码器中的交叉注意来抑制隐式学习的内部语言模型。我们证明了在几项任务中放松注意力的好处,并与最近的基准方法相结合,并明显改善。具体而言,我们超过了最大的最大公共唇部阅读LRS3基准的26.90%单词错误率的先前最新性能,单词错误率为26.31%,并且我们达到了最佳表现的BLEU分数37.67在IWSLT14(de $ \ rightarrow $ en)的机器翻译任务没有外部语言模型,几乎没有其他模型参数。代码和模型将公开可用。
translated by 谷歌翻译
基于变压器的模型已经证明了它们在自动语音识别(ASR)任务中的有效性,甚至比常规混合框架表现出卓越的性能。变形金刚的主要思想是通过自我发挥层来捕捉话语中的远程全球背景。但是,对于诸如对话演讲之类的场景,这种话语级建模将忽略跨越话语的上下文依赖性。在本文中,我们建议在基于变压器的端到端体系结构中明确模拟索语中的索引信息,以进行对话性语音识别。具体而言,对于编码器网络,我们捕获了先前语音的上下文,并将此类历史信息纳入了通过上下文感知的残余注意机制中的当前输入。对于解码器而言,当前话语的预测还可以通过有条件的解码器框架在历史性的语言信息上进行条件。我们展示了我们提出的方法在几个开源对话中心的有效性,而拟议的方法始终提高了基于话语级变压器的ASR模型的性能。
translated by 谷歌翻译