特征提取是图分析中的重要任务。这些特征向量(称为图形描述符)用于基于下游矢量空间的图形分析模型。过去证明了这个想法,基于光谱的图形描述符提供了最新的分类准确性。但是,要计算有意义的描述符的已知算法不会扩展到大图,因为:(1)它们需要将整个图存储在内存中,并且(2)最终用户无法控制算法的运行时。在本文中,我们提出流算法以大约计算三个不同的图形描述符,以捕获图的基本结构。在边缘流上操作使我们避免将整个图存储在内存中,并控制样本大小使我们能够将算法的运行时间保持在所需的范围内。我们通过分析近似误差和分类精度来证明所提出的描述符的功效。我们的可扩展算法计算图形的描述符,并在几分钟之内具有数百万个边缘。此外,这些描述符得出的预测精度可与最新方法相当,但只能使用25%的记忆来计算。
translated by 谷歌翻译
在过去十年中,图形内核引起了很多关注,并在结构化数据上发展成为一种快速发展的学习分支。在过去的20年中,该领域发生的相当大的研究活动导致开发数十个图形内核,每个图形内核都对焦于图形的特定结构性质。图形内核已成功地成功地在广泛的域中,从社交网络到生物信息学。本调查的目标是提供图形内核的文献的统一视图。特别是,我们概述了各种图形内核。此外,我们对公共数据集的几个内核进行了实验评估,并提供了比较研究。最后,我们讨论图形内核的关键应用,并概述了一些仍有待解决的挑战。
translated by 谷歌翻译
Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency -- given $n$ input points, most kernel-based algorithms need to materialize the full $n \times n$ kernel matrix before performing any subsequent computation, thus incurring $\Omega(n^2)$ runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recent Kernel Density Estimation framework, which (after preprocessing in time subquadratic in $n$) can return estimates of row/column sums of the kernel matrix. In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $\textit{sublinear}$ (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsification, where we observe a $\textbf{9x}$ decrease in the number of kernel evaluations over baselines for LRA and a $\textbf{41x}$ reduction in the graph size for spectral sparsification.
translated by 谷歌翻译
这篇综述的目的是将读者介绍到图表内,以将其应用于化学信息学中的分类问题。图内核是使我们能够推断分子的化学特性的功能,可以帮助您完成诸如寻找适合药物设计的化合物等任务。内核方法的使用只是一种特殊的两种方式量化了图之间的相似性。我们将讨论限制在这种方法上,尽管近年来已经出现了流行的替代方法,但最著名的是图形神经网络。
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
In this article, we propose a family of efficient kernels for large graphs with discrete node labels. Key to our method is a rapid feature extraction scheme based on the Weisfeiler-Lehman test of isomorphism on graphs. It maps the original graph to a sequence of graphs, whose node attributes capture topological and label information. A family of kernels can be defined based on this Weisfeiler-Lehman sequence of graphs, including a highly efficient kernel comparing subtree-like patterns. Its runtime scales only linearly in the number of edges of the graphs and the length of the Weisfeiler-Lehman graph sequence. In our experimental evaluation, our kernels outperform state-of-the-art graph kernels on several graph classification benchmark data sets in terms of accuracy and runtime. Our kernels open the door to large-scale applications of graph kernels in various disciplines such as computational biology and social network analysis.
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
图形神经网络(GNNS)具有有限的表现力量,无法正确代表许多图形类。虽然更具表现力的图表表示学习(GRL)替代方案可以区分其中一些类,但它们明显难以实现,可能不会很好地扩展,并且尚未显示在现实世界任务中优于经过良好调整的GNN。因此,设计简单,可扩展和表现力的GRL架构,也实现了现实世界的改进仍然是一个开放的挑战。在这项工作中,我们展示了图形重建的程度 - 从其子图重建图形 - 可以减轻GRL架构目前面临的理论和实际问题。首先,我们利用图形重建来构建两个新的表达图表表示。其次,我们展示了图形重建如何提升任何GNN架构的表现力,同时是一个(可证明的)强大的归纳偏见,用于侵略性的侵略性。凭经验,我们展示了重建如何提高GNN的表现力 - 同时保持其与顶点的排列的不变性 - 通过解决原始GNN的七个图形属性任务而无法解决。此外,我们展示了如何在九世界基准数据集中提升最先进的GNN性能。
translated by 谷歌翻译
Deep graph kernels
分类:
In this paper, we present Deep Graph Kernels, a unified framework to learn latent representations of sub-structures for graphs, inspired by latest advancements in language modeling and deep learning. Our framework leverages the dependency information between sub-structures by learning their latent representations. We demonstrate instances of our framework on three popular graph kernels, namely Graphlet kernels, Weisfeiler-Lehman subtree kernels, and Shortest-Path graph kernels. Our experiments on several benchmark datasets show that Deep Graph Kernels achieve significant improvements in classification accuracy over state-of-the-art graph kernels.
translated by 谷歌翻译
Graph神经网络(GNN)最近已成为使用图的机器学习的主要范式。对GNNS的研究主要集中于消息传递神经网络(MPNNS)的家族。与同构的Weisfeiler-Leman(WL)测试类似,这些模型遵循迭代的邻域聚合过程以更新顶点表示,并通过汇总顶点表示来更新顶点图表。尽管非常成功,但在过去的几年中,对MPNN进行了深入的研究。因此,需要新颖的体系结构,这将使该领域的研究能够脱离MPNN。在本文中,我们提出了一个新的图形神经网络模型,即所谓的$ \ pi $ -gnn,该模型学习了每个图的“软”排列(即双随机)矩阵,从而将所有图形投影到一个共同的矢量空间中。学到的矩阵在输入图的顶点上强加了“软”顺序,并基于此顺序,将邻接矩阵映射到向量中。这些向量可以被送入完全连接或卷积的层,以应对监督的学习任务。在大图的情况下,为了使模型在运行时间和记忆方面更有效,我们进一步放松了双随机矩阵,以使其排列随机矩阵。我们从经验上评估了图形分类和图形回归数据集的模型,并表明它与最新模型达到了性能竞争。
translated by 谷歌翻译
尽管(消息通话)图形神经网络在图形或一般关系数据上近似置换量等函数方面具有明显的局限性,但更具表现力的高阶图神经网络不会扩展到大图。他们要么在$ k $ - 订单张量子上操作,要么考虑所有$ k $ - 节点子图,这意味着在内存需求中对$ k $的指数依赖,并且不适合图形的稀疏性。通过为图同构问题引入新的启发式方法,我们设计了一类通用的,置换式的图形网络,与以前的体系结构不同,该网络在表达性和可伸缩性之间提供了细粒度的控制,并适应了图的稀疏性。这些体系结构与监督节点和图形级别的标准高阶网络以及回归体系中的标准高阶图网络相比大大减少了计算时间,同时在预测性能方面显着改善了标准图神经网络和图形内核体系结构。
translated by 谷歌翻译
图表表示学习是一种快速增长的领域,其中一个主要目标是在低维空间中产生有意义的图形表示。已经成功地应用了学习的嵌入式来执行各种预测任务,例如链路预测,节点分类,群集和可视化。图表社区的集体努力提供了数百种方法,但在所有评估指标下没有单一方法擅长,例如预测准确性,运行时间,可扩展性等。该调查旨在通过考虑算法来评估嵌入方法的所有主要类别的图表变体,参数选择,可伸缩性,硬件和软件平台,下游ML任务和多样化数据集。我们使用包含手动特征工程,矩阵分解,浅神经网络和深图卷积网络的分类法组织了图形嵌入技术。我们使用广泛使用的基准图表评估了节点分类,链路预测,群集和可视化任务的这些类别算法。我们在Pytorch几何和DGL库上设计了我们的实验,并在不同的多核CPU和GPU平台上运行实验。我们严格地审查了各种性能指标下嵌入方法的性能,并总结了结果。因此,本文可以作为比较指南,以帮助用户选择最适合其任务的方法。
translated by 谷歌翻译
Local graph neighborhood sampling is a fundamental computational problem that is at the heart of algorithms for node representation learning. Several works have presented algorithms for learning discrete node embeddings where graph nodes are represented by discrete features such as attributes of neighborhood nodes. Discrete embeddings offer several advantages compared to continuous word2vec-like node embeddings: ease of computation, scalability, and interpretability. We present LoNe Sampler, a suite of algorithms for generating discrete node embeddings by Local Neighborhood Sampling, and address two shortcomings of previous work. First, our algorithms have rigorously understood theoretical properties. Second, we show how to generate approximate explicit vector maps that avoid the expensive computation of a Gram matrix for the training of a kernel model. Experiments on benchmark datasets confirm the theoretical findings and demonstrate the advantages of the proposed methods.
translated by 谷歌翻译
我们提出了一种新颖的随机网络模型,称为分形高斯网络(FGN),体现了明确定义和分析的分形结构。在不同的应用中经过经验观察了这种分形结构。 FGN在流行的纯粹随机几何图(A.K.A.Poirson Boolean网络)之间连续插入,以及具有越来越分形行为的随机图。事实上,它们形成了一个参数族的稀疏随机几何图,这是由条形参数化的,该参数化为分形结构的强度。 FGN由高斯乘法混沌(GMC)的潜在空间几何形状,其自身右边的分数正常的规范模型。我们在FGN中渐近地表征了FGN中的预期边缘,三角形,群体和轮辐型图案,揭示了与网络的大小参数的缩放中的不同模式。然后,我们除了作为随机图模型的基本属性之外,还基于观察到的网络数据检测变形的存在和基于观察到的网络数据的参数估计问题的自然问题。我们还通过在FGN的设置中揭开自然随机块模型来探讨社区结构的性别性。最后,我们将我们的结果与FGN的现象学分析证实了可用的科学文献中的空中性的现场,包括用于现实世界大规模网络数据的应用。
translated by 谷歌翻译
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.
translated by 谷歌翻译
已经提出了多种寻找属于种植的致密子图的顶点的方法,以随机致密的$ G(n,p)$图表,重点是种植的派系。这些方法可以识别多项式时间中的种植的子图,但全部限于几个子图结构。这里,我们呈现Pygon,这是一种基于图的神经网络的算法,这对种植子图的结构不敏感。这是第一个使用高级学习工具来恢复密集子图的算法。我们表明Pygon可以恢复尺寸$ \ theta \ left的派系(\ sqrt {n}右)$,其中$ n $是背景图的大小,与现有技术相当。我们还表明,相同的算法可以在指向和无向图形中恢复左转(\ sqrt {n \右)$的尺寸尺寸的其他种植的子图。我们建议一个猜想,没有多项式时间PAC学习算法可以检测尺寸小于$ o \ lex的种植的密集子图(\ sqrt {n}右)$,即使原则上也可以找到对数尺寸的密集子图。
translated by 谷歌翻译
Graph clustering is a fundamental problem in unsupervised learning, with numerous applications in computer science and in analysing real-world data. In many real-world applications, we find that the clusters have a significant high-level structure. This is often overlooked in the design and analysis of graph clustering algorithms which make strong simplifying assumptions about the structure of the graph. This thesis addresses the natural question of whether the structure of clusters can be learned efficiently and describes four new algorithmic results for learning such structure in graphs and hypergraphs. All of the presented theoretical results are extensively evaluated on both synthetic and real-word datasets of different domains, including image classification and segmentation, migration networks, co-authorship networks, and natural language processing. These experimental results demonstrate that the newly developed algorithms are practical, effective, and immediately applicable for learning the structure of clusters in real-world data.
translated by 谷歌翻译
消息传递神经网络(MPNNS)是由于其简单性和可扩展性而大部分地进行图形结构数据的深度学习的领先架构。不幸的是,有人认为这些架构的表现力有限。本文提出了一种名为Comifariant Subgraph聚合网络(ESAN)的新颖框架来解决这个问题。我们的主要观察是,虽然两个图可能无法通过MPNN可区分,但它们通常包含可区分的子图。因此,我们建议将每个图形作为由某些预定义策略导出的一组子图,并使用合适的等分性架构来处理它。我们为图同构同构同构造的1立维Weisfeiler-Leman(1-WL)测试的新型变体,并在这些新的WL变体方面证明了ESAN的表达性下限。我们进一步证明,我们的方法增加了MPNNS和更具表现力的架构的表现力。此外,我们提供了理论结果,描述了设计选择诸如子图选择政策和等效性神经结构的设计方式如何影响我们的架构的表现力。要处理增加的计算成本,我们提出了一种子图采样方案,可以将其视为我们框架的随机版本。关于真实和合成数据集的一套全面的实验表明,我们的框架提高了流行的GNN架构的表现力和整体性能。
translated by 谷歌翻译
大图通常出现在社交网络,知识图,推荐系统,生命科学和决策问题中。通过其高级别属性总结大图有助于解决这些设置中的问题。在光谱聚类中,我们旨在确定大多数边缘落在簇内的节点簇,而在簇之间只有很少的边缘。此任务对于许多下游应用和探索性分析很重要。光谱聚类的核心步骤是执行相应图的拉普拉斯矩阵(或等效地,奇异值分解,SVD)的特征分类。迭代奇异值分解方法的收敛取决于给定矩阵的光谱的特征,即连续特征值之间的差异。对于对应于群集图的图形的图形拉普拉斯,特征值将是非负的,但很小(小于$ 1 $)的减慢收敛性。本文引入了一种可行的方法,用于扩张光谱以加速SVD求解器,然后又是光谱群集。这是通过对矩阵操作的多项式近似来实现的,矩阵操作有利地改变矩阵的光谱而不更改其特征向量。实验表明,这种方法显着加速了收敛,我们解释了如何并行化和随机近似于可用的计算。
translated by 谷歌翻译
图表神经网络(GNN)和消息通过神经网络(MPNNS)被证明是在许多应用中的子图结构中表达的。异构图中的一些应用需要明确的边缘建模,例如子图同样计数和匹配。但是,现有的消息传递机制在理论上并不良好设计。在本文中,我们从特定的边缘到顶点变换开始,利用边缘到顶点双图中的同义性属性。我们证明,搜索原始图中的同构相当于在其双图上搜索。基于该观察,我们提出了通过神经网络(DMPNNS)的双信息以异步方式增强子图同样计数和匹配以及无监督的节点分类。广泛的实验通过在合成和真实异构图中结合节点和边缘表示学习来证明DMPNN的稳健性能。代码可在https://github.com/hkust-knowcomp/dualmessagepass上获得。
translated by 谷歌翻译